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Abstract. Unsupervised Domain Adaptation (UDA) aims to align la-
beled source distribution and unlabeled target distribution by mining
domain-agnostic feature representation. However, adapting the source-
trained model for new target domains after the model is deployed to
users poses a significant challenge. To address this, we propose a gen-
erative latent search paradigm to reconstruct the closest clone of every
target image from the source latent space. This involves utilizing a test-
time adaptation (TTA) strategy, wherein a latent optimization step finds
the closest clone of each target image from the source representation
space using variational sampling of source latent distribution. Thus, our
method facilitates domain adaptation without requiring target-domain
supervision during training. Moreover, we demonstrate that our approach
can be further fine-tuned using a few labeled target data without the need
for unlabeled target data, by leveraging global and local label guidance
from available target annotations to enhance the downstream segmenta-
tion task. We empirically validate the efficacy of our proposed method,
surpassing existing UDA, TTA, and SSDA methods in two domain adap-
tive image segmentation tasks. Code is available at GitHub.

Keywords: Domain Adaptation · Segmentation · Variational Inference.

1 Introduction

Supervised deep learning techniques have excelled with abundant annotated nat-
ural image datasets, but this success does not always translate to medical im-
agery. Clinician-grade annotations are the gold standard, but acquiring them is
time-consuming and requires deep domain expertise. Hence, methods alleviating
this requirement are highly expedient. Moreover, medical images often contain
significant domain shifts, especially across institutions and device modalities,
leading to variations in image intensities and appearance. Models trained solely
on one dataset struggle to adapt to new domains with such profound distribution
shifts. This emphasizes the need for solutions tailored to address domain shifts
and alleviate the annotation effort on new domains.

Lately, Unsupervised Domain Adaptation (UDA) that uses labeled source
(SL) and unlabeled target data (TU) for training has been instrumental [18]. Ex-
isting approaches include image reconstruction [25], self-training [1], divergence
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minimization [12], etc. Recently, a dual-adaptation framework was proposed in
[13] to align low-level edge information and high-level semantics separately for
UDA. A Dual-Scheme-Fusion-Network (DSFN) [31] was also introduced for a
balanced bidirectional domain adaptation. Another popular latent alignment
was coined using an adversarial approach [6]. However, as exemplified by [20],
these methods focus on mining domain-invariant representations, requiring un-
labeled target images being available for training. While acquiring target images
in new domains is doable, retraining the model for every new target domain is
patently impractical, particularly after models are deployed to users [16].

To this end, test-time adaptation (TTA) and domain generalization (DG)
are promising and practical solutions. In TTA, only labeled source data (SL)
are available during training, whereas the model adapts to target data while
inference. A seminal work by combining TTA and DG, using a dictionary-based
consistency was proposed in [11]. Another promising work in a similar direction
proposed prototypical TTA using feature distance [10]. SATTA [28] was intro-
duced to address the existing challenges by utilizing uncertainty estimation for
each semantic category and adaptive learning rate. While promising, they rely
heavily on a high-quality pre-trained model and data alignment across domains,
making them ineffective in addressing label shift [29] and correlation shift [19].

Recently, semi-supervised domain adaptation (SSDA) was introduced by
proposing an asymmetric co-training for domain-agnostic information retrieval
[14]. In SSDA, labeled source (SL), unlabeled target (TU), and a few labeled
target data (TL) are available for training. DisCL [1] proposed another SSDA
paradigm using contrastive learning to disentangle content and style. However,
they tend to cause overfit and bias toward source data due to their abundance
in the training set, leading to degraded adaptation ability while inference.

In this work, we introduce an innovative domain adaptation framework that
eliminates the necessity for access to target data during training. Our approach
involves training a segmentation model solely on labeled source data, followed by
searching for a source-like clone in the source latent space for every target image.
This clone serves as a proxy or surrogate of the target image to be processed
by the model. Specifically, our contributions are: (1) New TTA Paradigm:
We present a DA paradigm that circumvents the conventional reliance on tar-
get data, paving the way for more efficient and resource-conservative test-time
adaptation. (2) Enhanced Source-like Target Clone: Our approach pre-
cisely maps every target image to its closest clone within the source latent space
by a latent optimization strategy. By finding the clone of every target image
from the source latent space, we introduce an effective way of adapting to new
target domains, resulting in superior performance. (3) Scalability to SSDA−:
We further introduce global and local semantic guidance in a new SSDA− set-
ting to explore beyond TTA’s adaptation ability. Different from the traditional
SSDA that uses labeled source (SL), both labeled (TL) and unlabeled (TU)
target data, our SSDA− only uses SL and TL, greatly reducing the training
data acquisition effort in new target domains. Upon evaluation, our proposed



Quest for Clone 3

Edge
guidance A

Edge
guidance

Sample
Random   

Target
Image   

converged?

Reconstructed
Image   

No

Yes

Source-like-
Target    

B

Sample
Random   

Image
Translation

Network

Edge
guidance

..
..

Source Latent
Space

Source
Images

Target Image

Source-like-
Target     

Ground
Truth

Seg.
Output

Ground
Truth

: Pre-trained Seg. Net. on Source Domain : Pre-trained VAE Encoder on Source : Element-wise Multiplication

Dilated
Binary Mask

Binary masks

Image Translation
Network

Sample
Random   

Image Translation
Network

Edge
guidance

DC

Fig. 1: (A) Training VAE via image reconstruction on source domain, obtaining
latent feature representation through Eψ, (B) Clone a target image in the source
latent space. A point z is sampled randomly from source latent space, which
is then iteratively optimized through the proposed algorithm (subsection 2.2),
resulting in a source-like clone x̂s for a target image xt, (C) For SSDA−, we
fine-tune Sθ using a few target annotations. (D) The inference pipeline.

method performs superior on multi-organ and multi-modal benchmark datasets,
compared to existing UDA, TTA, and SSDA works.

2 Proposed Method

Given source-domain image-label pairs {Xs,Ys}, we first propose to leverage
VAE-based reconstruction network to learn source distribution while concur-
rently normalizing the latent space Ls effectively (subsection 2.1). Then, we use
VAE-decoder to find the clone of a target sample from Ls (subsection 2.2). We
further explain the SSDA− setting in subsection 2.3.

2.1 Variational Sampling of Source Latent Space

In variational inference-based models using VAE [8], the underlying premise
revolves around a dual-stage data generation: (i) a random sample from a dis-
tribution Mϕ(z) of a latent variable z is generated, (ii) given a specific latent
variable, generate data x by sampling from Mϕ(x|z). However, Mϕ(x|z) and
Mϕ(z) are governed by unknown parameters, whereas the posterior Mϕ(z|x)
is computationally intractable. A new variational distribution Nψ(z|x) is intro-
duced to circumvent these obstacles. With this, we decompose the log-likelihood
of observed data into an evidence lower bound (ELBO) based on KLD [9] term:

L(ψ, ϕ) = ENψ(z|x)[log(Mϕ(x|z))]−KL
[
Nψ(z|x)||Mϕ(z)

]
(1)
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Equation 1 serves as the lower bound of the log-likelihood and can be maxi-
mized in a VAE by parameterizing Nψ(z|x) andMϕ(x|z) using encoder-decoder
network {Eψ,Dϕ}, where ψ, ϕ denote the parameters of VAE encoder and de-
coder, respectively. With this, we train the VAE encoder-decoder {Eψ,Dϕ} on
source domain image x to reconstruct x̂, where we approximate the first term in
Equation 1 to a pixel-wise reconstruction loss LR on Dϕ:

ENψ(z|x)[log(Mϕ(x|z))] ≊ LR = ||x̂− x||2 (2)

Additionally, we concatenate domain-invariant edge information (e.g., basic So-
bel edge features) with intermediate features in VAE decoder. The overall VAE
training is shown in Figure 1A. By initializingMϕ(z) = N (0, I), and due to in-
herent property of VAE, the source latent space Ls is approximated to a normal
distribution using the KLD term. Post training, Dϕ operates as a pivotal sam-
pler in two steps: (i) a sample z is drawn from a standard Gaussian distribution
N (0, I), (ii) x is generated from the conditional distributionMϕ(x|z). Given a
target image xt, first, we prove the existence of its source-like closet clone from
Ls, and then we present how to find the clone in the following subsection.

2.2 Source-like Clone of a Target Image

Lemma: Let’s denote m i.i.d. points from source distribution Ls as Xm =
{x1, x2, .., xm} (m is large) and xt be a point from target distribution. The
fundamental postulate delineating the existence of the closest clone (in terms of
distance metric d) is: if d(x̂, xt) > d(x̂s, xt), ∀x̂ ∈ Xm, then xt’s closest clone
x̂s certainly exists in Ls, i.e., x̂s ∈ Xm.
Proof : We denote a p-radius sphere around point xt as Sp(xt) = {x ∈ Xm :
d(x, xt) < p} using distance metric d. Using a separable metric space [4], the

probability of non-empty sphere IP
(
Sp(xt)

)
can be defined as:

IP
(
Sp(xt)

)
≜

∫
Sp(xt)

Ls(x) dx > 0; (3)

The probability of no points xk ∈ Xm are within Sϵ(xt) with radius ϵ:

IP
(
min
k

d(xk, xt) ≥ ϵ
)
=

(
1− IP

(
Sϵ(xt)

))m
, ∀xk ∈ Xm (4)

Hence, the probability of x̂s, i.e. the closest point of xt from source latent space
Ls being within the sphere Sϵ(xt) of radius ϵ is:

IP
(
x̂s ∈ Sϵ(xt)

)
= 1−

(
1− IP

(
Sϵ(xt)

))m
(5)

= 1 for m approaches ∞ (6)

As 0 <
[
1− IP

(
Sϵ(xt)

)]
< 1, m→∞ (infinite points can be sampled from Ls),

∃ x̂s ∈ Xm i.e., a closest clone within small distance ϵ from xt, with IP=1.
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Finding the Closest Clone Given a target sample xt, we perform latent op-
timization to find the target’s source-like clone x̂s:

x̂s = Dϕ(ẑs) : d(x̂, xt) > d(x̂s, xt), ∀x̂ = Dϕ(z) ∼ Ls(x), z ∼ N (0, I) (7)

SSIM loss [24] LSS is used for d (refer to supplementary file for different distance
metrics). As seen in Figure 1B, the clone search is an optimization step, i.e.,
gradient descent on z to find the closest clone x̂s as proxy of target image xt:

x̂s = Dϕ(ẑs); ẑs = argmin
z

LSS(xt,Dϕ(z)) (8)

Here ẑs is obtained by gradient descent: z ← z + α∇zLSS with learning rate α.
For TTA, x̂s (the closest clone of target image xt) is directly fed into Sθ to

obtain xt’s segmentation mask (Figure 1D), where Sθ is a segmentation network
trained only using labeled source data. For SSDA−, we can further fine-tune Sθ
as described below.

2.3 Semi-supervised Fine-tuning

In TTA, the segmentation model Sθ is trained solely on the source domain,
without incorporating any data from the target domain. However, if a few labeled
data becomes available from the target domain, we can enhance Sθ further in
the SSDA− paradigm (defined in section 1).

As shown in Figure 1C, given a target label yt, we extract a dilated version
(m′

c) of binary mask mc indicating the cth class in target image xt (c ∈ C; C
indicating total number of classes). m′

c is element-wisely multiplied (⊙) with the
source-like clone x̂s of the target image and is fed into Sθ. Subsequently, the
output is employed to compute the local class-wise CE-loss LSegc :

LSegc = LCE
(
Sθ(x̂s ⊙m′

c), yt ⊙mc

)
(9)

The class-wise segmentation can guide Sθ to preserve local semantics for pixels in
each class of source-like cloned target image x̂s and provides strong supervision
towards accurate segmentation in the class-boundary regions. We also propose
a global image-level semantic supervision to complement this per-class guidance
to enhance global harmony in the segmentation task. Specifically, we utilize a
global CE loss for image-level supervision: LSegG = LCE(Sθ(x̂s), ŷ). Finally, Sθ is
fine-tuned using the gradient of combined local and global segmentation losses
using hyperparameters γ and δ:

θ′ ← θ + γ∇θ
∑
c

LSegc + δ∇θLSegG (10)

3 Experiments and Results

Datasets: The evaluation is performed on two widely-used domain-adaptive
medical image segmentation benchmarks consisting of multiple structures/tumors
and various modalities: (1) Cardiac structure segmentation from Multi-Modality
Whole Heart Segmentation (MMWHS) Challenge dataset [30], and (2) Brain
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tumor segmentation in MRI images from BraTS2018 dataset [15]. MMWHS
contains 20 unpaired CT and 20 MRI volumes collected from multiple sources.
Following [21], we choose four classes for domain adaptive segmentation: Left
Ventricle (LV), Left Atrium (LA), Myocardium (MYO), and Ascending Aorta
(AA). BraTS contains MRI volumes of 285 patients with four modalities: T1CE,
T1, T2, and FLAIR. The rest of the experimental settings are consistent with
previous works [1,13,14] for a fair comparison: (a) Source→Target: CT→MRI
and MRI→CT in MMWHS. T2→{T1CE, T1, FLAIR} in BraTS. (b) SSDA:
1 or 5 labeled samples from the target domain are available.
Implementation Details: We implement our work in Python environment us-
ing a Nvidia TeslaV100 GPU with 32GB RAM. Training the model requires 2−3
hours, whereas inference typically takes 5−8 seconds for every test image in the
new target domain, due to the clone-search in test time adaptation. We use U-
Net [17] as the segmentation network Sθ. VAE was trained using RMSProp with
a learning rate of 0.0001 whereas Adam optimizer was employed for training Sθ.
α, γ, δ are set to 0.01, 0.5, 0.5, respectively by validation.
Evaluation Metrics: Dice Similarity Coefficient (DSC), Hausdorff Distance
(HD), and Average Surface Distance (ASD).

3.1 Performance Evaluation on MMWHS

We compare our proposed method with state-of-the-art on UDA, TTA, and
SSDA tasks, as shown in Table 1. Following previous works [5,2,7], we report
DSC/ASD on MRI→CT and CT→MRI. SECASA [5] selectively maximizes low-
entropy or high-confidence regions in segmentation but provides no substantial
effort to bridge the domain gap. On the other hand, CPCL [2] uses prototypical
contrastive learning, which is useful for image-level classification but lacks pixel-
level supervision for segmentation. A similar drawback is present in T-MAtt [7],
which mines long-range dependencies using meta-attention but lacks a pixel-
level supervision module. We address these shortcomings by finding the target’s
clone from the source latent space, along with retaining its original structural
integrity by edge guidance. When compared to TTA methods [22,27,26], they
produce subpar performance (on average ∼ 5 − 6% drop than ours in DSC)
due to inefficient adaptation capabilities because of lack of target domain data.
Surprisingly, even without using any target domain data for training, our test
time adaptation beats the UDA methods [5,2,7] that use unlabeled target data
for training by ∼ 1 − 3% on average in DSC. For SSDA, SLS [3] and DLDM
[23] demonstrate limited refinement capabilities for medical image analysis. Our
method in SSDA− (only 1 or 5 labeled target data for training without using
unlabeled target data) surpasses all the existing SSDA techniques that use both
1 or 5 labeled and unlabeled target data, justifying its superiority.

3.2 Performance Evaluation on BraTS2018

Similar observations were noted in tumor segmentation using the BraTS2018
dataset, shown in Table 2. DSAN [6] and DFN [31] rely on image translation
for style adaptation, yielding biased outcomes toward the source domain. Al-
though centered on target-to-source transfer, our approach leverages variational
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Data Access MRI→CT CT→MRI
Setting

Method SL TL TU LV LA MYO AA avg. LV LA MYO AA avg.

No DA - ✓ 53.5/18.7 7.3/25.8 2.1/29.9 18.5/27.3 20.4/25.4 18.3/33.6 36.8/18.9 7.2/27.8 30.8/20.2 23.3/25.1

TTA
DLTTA [26] ✓ 74.5/7.7 88.2/9.2 60.2/4.9 85.5/12.1 77.1/8.5 72.0/11.6 59.4/13.8 57.1/7.8 75.2/5.7 65.9/9.5
CoTTA [22] ✓ 79.5/4.9 80.3/5.4 63.1/7.3 85.4/7.1 77.1/6.2 79.6/3.8 63.1/6.4 48.4/4.0 68.2/5.5 64.8/4.9
DomAda [27] ✓ 82.1/5.8 86.8/5.5 64.2/6.1 87.9/7.1 80.2/6.1 81.1/4.4 69.3/6.3 48.3/4.2 75.0/5.5 66.4/5.1

UDA
SECASA [5] ✓ ✓ 82.9/5.4 85.2/3.6 71.7/6.2 83.8/4.9 80.9/5.1 81.0/ 3.9 74.6/4.2 55.9/3.9 68.3/9.6 69.9/5.4
CPCL [2] ✓ ✓ 85.6/4.5 88.6/3.9 61.5/6.2 89.6/6.1 82.1/5.2 81.2/4.6 70.1/4.1 60.8/3.5 62.5/9.9 70.1/5.5
T-MAtt [7] ✓ ✓ 77.6/7.6 88.7/3.8 67.4/5.2 90.8/5.7 81.1/5.6 77.5/5.6 67.4/6.9 59.1/4.2 71.0/5.4 68.7/5.3

TTA Ours ✓ 85.6/4.6 89.2/3.6 71.9/5.1 91.2/4.8 84.5/4.6 81.4/3.7 70.5/4.0 60.9/3.5 75.2/5.4 71.3/4.4

SSDA:1

SLS [3] ✓ 1 ✓ 84.7/5.2 83.3/4.9 72.3/5.8 85.4/6.3 81.4/5.6 82.0/5.4 71.9/5.3 62.9/4.4 75.8/4.0 73.2/4.8
DLDM [23] ✓ 1 ✓ 85.0/4.7 83.1/5.6 71.7/5.8 85.9/6.2 81.4/5.6 82.7/5.3 70.4/6.7 63.1/4.5 76.0/3.7 73.3/5.1
ACT [14] ✓ 1 ✓ 87.9/3.9 88.5/3.6 75.5/4.8 88.3/5.1 85.1/4.4 85.1/4.2 74.8/4.2 65.9/3.7 74.7/3.7 75.1/4.0
DisCL [1] ✓ 1 ✓ 88.2/4.6 88.6/4.0 76.9/4.9 89.6/5.8 85.8/4.8 85.8/3.9 73.3/5.1 64.9/3.9 75.9/3.8 75.0/4.2

SSDA−:1 Ours ✓ 1 88.7/3.8 89.8/2.8 77.4/4.7 91.7/4.0 86.8/3.8 87.7/2.8 76.8/3.0 66.9/3.3 76.3/4.1 76.9/3.3

SSDA:5

SLS [3] ✓ 5 ✓ 86.4/4.2 88.0/4.1 77.2/5.0 89.0/5.2 85.2/4.6 86.7/4.0 77.8/4.2 70.3/3.9 78.4/3.4 78.3/3.9
DLDM [23] ✓ 5 ✓ 87.5/3.9 88.1/4.1 78.0/4.7 89.3/5.2 85.7/4.5 87.9/3.7 77.7/4.5 72.2/3.6 78.6/3.3 79.1/3.8
ACT [14] ✓ 5 ✓ 89.0/3.1 89.6/3.3 78.4/4.1 91.6/4.4 87.2/3.7 88.6/3.1 78.3/3.1 73.9/3.3 79.1/3.2 80.0/3.2
DisCL [1] ✓ 5 ✓ 89.5/3.3 89.2/3.5 80.8/3.6 91.7/4.6 87.8/3.8 89.9/2.1 79.1/2.8 75.8/3.2 79.1/3.6 81.0/2.9

SSDA−:5 Ours ✓ 5 90.2/2.8 90.5/2.0 83.3/2.1 92.4/3.2 89.1/2.5 90.1/1.8 79.7/2.5 77.0/3.0 80.5/2.7 81.8/2.5

Supervised Joint Train ✓ ✓ ✓ 91.9/1.3 91.1/2.3 87.8/1.2 92.7/1.5 90.9/1.6 92.4/1.4 80.5/1.7 78.8/2.5 82.8/1.1 83.6/1.7

Table 1: Comparison with SoTA UDA, TTA, and SSDA methods for cardiac
structures segmentation on MMWHS dataset in MRI→CT and CT→MRI
settings. Data used for training: SL: labeled source, TL: labeled target (1 and
5 labels in SSDA settings), TU : unlabeled target; Metrics used: DSC↑/ASD↓.
The best and second-best values are highlighted in red and blue.

Data Access DSC↑ HD↓
Setting

Method SL TL TU T1CE T1 FLAIR T1CE T1 FLAIR

No DA - ✓ 10.9 6.7 55.1 60.3 50.4 28.1

TTA
DLTTA [26] ✓ 42.1 38.1 63.3 17.2 25.4 23.2
CoTTA [22] ✓ 63.5 59.3 82.9 11.2 12.5 7.9
DomAda [27] ✓ 58.2 51.7 68.0 15.0 19.6 16.9

UDA
DFN [31] ✓ ✓ 62.2 57.3 78.9 15.5 17.5 13.8
DSAN [6] ✓ ✓ 62.0 57.7 81.8 13.7 14.2 8.6
DisCL [1] ✓ ✓ 64.4 60.7 83.3 10.9 11.1 7.3

TTA Ours ✓ 65.1 61.2 83.6 10.3 10.6 6.9

SSDA:1

SLS [3] ✓ 1 ✓ 66.1 64.7 82.3 10.5 12.2 7.1
DLDM [23] ✓ 1 ✓ 66.5 65.8 81.5 10.3 12.0 7.1
ACT [14] ✓ 1 ✓ 69.7 69.7 84.5 10.0 10.5 5.8

ACT-Exp [14] ✓ 1 ✓ 69.0 67.4 83.9 10.3 10.9 6.4
DisCL [1] ✓ 1 ✓ 71.9 72.2 85.8 9.5 10.0 5.2

SSDA−:1 Ours ✓ 1 72.8 73.3 87.1 9.0 9.6 4.8

SSDA:5

SLS [3] ✓ 5 ✓ 71.2 67.2 83.1 10.1 11.7 6.8
DLDM [23] ✓ 5 ✓ 68.3 67.8 83.3 9.9 11.2 6.6
ACT [14] ✓ 5 ✓ 70.8 71.3 85.0 9.8 10.0 5.2

ACT-Exp [14] ✓ 5 ✓ 69.8 70.3 84.4 10.2 10.4 5.7
DisCL [1] ✓ 5 ✓ 72.4 73.1 86.1 9.3 9.7 4.8

SSDA−:5 Ours ✓ 5 73.5 74.1 87.9 8.7 9.3 4.4

Supervised Joint Train ✓ ✓ ✓ 73.8 74.9 88.3 8.4 9.0 4.1

Table 2: Comparison with SoTA UDA, TTA, and SSDA methods for whole
tumor segmentation on BraTS2018 dataset in T2 →{T1CE, T1, FLAIR}
settings. Data used for training: SL: labeled source, TL: labeled target (1 and
5 labels in SSDA settings), TU : unlabeled target; Metrics used: DSC↑/HD↓.
The best and second-best values are highlighted in red and blue.
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Exp.#
Components MMWHS BraTS2018 (T2 Source)

Edge
Guidance

Global

LSeg
G

Local
LSeg

c
MRI→CT CT→MRI T1CE T1 FLAIR

(a) 83.1 / 5.6 69.8 / 5.5 64.5 / 11.4 60.6 / 10.9 83.1 / 7.2
(b) ✓ 84.5 / 4.6 71.3 / 4.4 65.1 / 10.3 61.2 / 10.6 83.6 / 6.9
(c) ✓ ✓ 88.8 / 2.8 81.6 / 2.7 73.0 / 9.1 73.9 / 9.5 87.3 / 4.6
(d) ✓ ✓ ✓ 89.1 / 2.5 81.8 / 2.5 73.5 / 8.7 74.1 / 9.3 87.9 / 4.4

Table 3: Ablation experiment for two segmentation tasks in SSDA− setting (with
5 target labels) to understand the contribution of individual components. Metrics
used: DSC↑/ASD↓ for MMWHS and DSC↑/HD↓ for BraTS. The mean of
four segmentation tasks (LV, LA, MYO, AA) is reported for MMWHS.

inference-based source sampling and generative latent optimization for efficient
target-clone generation, demonstrating effectiveness in diverse and challenging
domain adaptation scenarios like BraTS. Although quite effective, DCL [1] falls
short in fully leveraging domain-agnostic information, resulting in a second-best
performance for both UDA and SSDA. TTA approaches [26,27,22] lag behind
their UDA counterpart due to lack of discriminative feature learning from the
target domain. Interestingly, our TTA without accessing any target data for
training beats all existing UDA and TTA methods in Table 2. Our SSDA−

method that only accesses 1 or 5 labeled target data beats all other SSDA meth-
ods and even performs close to fully supervised ones (last row in Table 2).

3.3 Ablation Experiments

We conduct a detailed ablation experiment, as demonstrated in Table 3. The ef-
fectiveness of edge guidance in constructing the source latent space and finding a
target’s source-like clone is evident in experiment (b) as compared to (a), where
the inclusion of domain-agnostic edge features leads to important spatial and
structural guidance for reconstruction, resulting in superior segmentation per-
formance. Please refer to supplementary material for qualitative performance.
In exp.(c), global semantic guidance using LSegG brings a significant boost as
compared to exp. (a) (up to ∼ 13% in MMWHS and ∼ 16% in BraTS avg. DSC
improvement), justifying the significance of semi-supervised fine-tuning. Further-
more, local semantic guidance in exp.(d) complements its global counterpart by
bringing significant boost (up to ∼ 17% and ∼ 23% DSC gain in MMWHS and
BraTS, respectively). Additional results are in supplementary material.

4 Conclusion

We present a novel latent search-based optimization strategy for generating the
closest clone of each target image within the source latent space during in-
ference. This approach eliminates the need for continually refining a deployed
model with the inception of new domains. Additionally, we extend our method
to semi-supervised settings by incorporating label guidance at both global and
local scales. Through comprehensive experimental analysis on two domain adap-
tive segmentation tasks, we demonstrate the superior performance of our pro-
posed approach over state-of-the-art UDA, TTA, and SSDA methods. Though
currently tested on modality shifts only, we will extend this paradigm across
datasets with different organs and anatomical variations.
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