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Abstract. Contemporary medical contrastive learning faces challenges
from inconsistent semantics and sample pair morphology, leading to dis-
persed and converging semantic shifts. The variability in text reports, due
to multiple authors, complicates semantic consistency. To tackle these
issues, we propose a two-step approach. Initially, text reports are con-
verted into a standardized triplet format, laying the groundwork for our
novel concept of “observations” and “verdicts”. This approach refines the
Entity, Position, Exist triplet into binary questions, guiding towards a
clear “verdict”. We also innovate in visual pre-training with a Meijering-
based masking, focusing on features representative of medical images’
local context. By integrating this with our text conversion method, our
model advances cross-modal representation in a multimodal contrastive
learning framework, setting new benchmarks in medical image analysis.

1 Introduction

With the swift advancements in deep learning, computer-aided diagnosis in the
medical field has made notable progress through various models. However, these
models, predominantly trained on specific anatomical or disease categories, de-
mand costly data annotation and re-training when a new disease emerges [15],
limiting their practical utility. While deep learning has flourished due to large-
scale labeled natural image datasets [7], the annotation of medical images re-
mains time-consuming and expensive. A common strategy involves pre-training
on large datasets like ImageNet [7] and then fine-tuning on specialized medical
datasets [29], but this often falls short in terms of generalized performance due
to the domain differences between natural and medical images.

Medical image analysis stands at the crossroads of technological advance-
ments and clinical applications. The rapid growth of medical imaging modalities
and the increasing volume of patient data offer unprecedented opportunities to
leverage sophisticated machine learning techniques. Yet, the complexity of this
data—rich in variability, granularity, and intricacies—poses unique challenges
for the development of effective and reliable models. Adding to the challenge,
the associated textual data, which often accompanies these images in the form of
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clinical notes and radiological reports, can introduce inconsistencies due to var-
ied semantics and writing styles across different authors [9], potentially leading
to significant noise in the learning process and compromising model reliability.

Self-supervised learning has emerged as a powerful paradigm for pre-training
deep neural networks without relying on human annotations, leveraging inherent
structure in the data to learn useful representations in a scalable manner [23].
Drawing on these advancements, this paper introduces a novel approach that
combines self-supervised learning with the nuanced requirements of medical data
processing. We propose a two-step conversion process for textual data into a
standardized triplet format to refine representations and an innovative visual
pre-training strategy that employs Meijering-based masking for improved feature
extraction [20].

Furthermore, vision-language pre-training (VLP) models like CLIP [23] have
shown success in learning joint multimodal representations but struggle with the
unique challenges presented by medical images and unstructured reports [30]. We
address these challenges by employing a filtering-based approach for preprocess-
ing medical images, enhancing the performance of deep learning models through
classical techniques like Meijering’s vesselness filter [20,24] and adapting these
for novel masking strategies to facilitate cleaner reconstructions and improved
model performance.

Incorporating external knowledge into medical models has shown promise
in mimicking medical decision-making processes and enhancing model training
with domain-specific clinical knowledge [28]. Building on the concept of Med-
KLIP [30], we extend the extraction of key data from radiology reports into
triplets and encode it with domain knowledge to improve masked generative
pre-training [30].

This paper aims to bridge the gap between the raw, multifaceted medical
data and the refined, consistent representations needed for effective machine
learning applications, pushing the boundaries of medical pre-training by tailoring
advanced techniques specifically for the medical domain. Through an amalgama-
tion of self-supervised learning, VLP models, preprocessing techniques, and the
incorporation of medical knowledge, we propose a comprehensive framework for
enhancing the performance and reliability of machine learning models in medical
image analysis and report generation.

2 Methodology

In Figure 1, we outline our approach, adopting MaskVLM’s [18] architecture.
Our innovations primarily lie in visual and textual data pre-processing, rather
than the architecture itself, which serves as a foundation for our training method-
ology. We employ transformer-based encoders [8,26] for concurrent image and
text analysis. The image encoder extracts features as vector sets, including a
class token, while the text encoder processes text with a start token. Through
self-attention and cross-modality encoders featuring cross-attention, we enhance
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Fig. 1. An overview of the architecture for integrated modeling of masked medical
visual and linguistic data. The blue and green pathways represent the flow of informa-
tion for the reconstruction of images and text, respectively. The dashed lines show the
intermodal contribution of exposed signals for the creation of attention.

inter-modal integration, culminating in accurate image descriptions. Further de-
tails and the rationale for our methods are elaborated in subsequent sections.

2.1 Masked Image Modeling

Masked Image Modeling (MIM) [10] revolutionizes self-supervised learning by
enabling models to infer visual contexts without extensive labeled data, thereby
enhancing efficiency and generalization. However, for fine-grained medical data,
random masking leads to unclear reconstructions. Despite being superior to ran-
dom initialization [32], improvements are needed due to the reliance on local
features in medical images. Utilizing ridge filters, like the Meijering filter, con-
verts X-ray images into intermediate forms for reconstruction, addressing the
fine-grained nature of medical data [20,24]. This approach, supported by qual-
itative analysis in Figure 2 and further in Table 7 and Table 6, empirically
outperforms random masking as evidenced by our ablation study.

Fig. 2. Comparing masking strategies: (a) Masking random patches for reconstruction
often results in blurry outputs lacking in detail. (b) Filtering the image before recon-
struction preserves fine-grained details, leading to higher resolution outcomes.
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Meijering Filter Overview The Meijering filter enhances tubular structures
in images via the Hessian matrix’s eigenvalues [20]. For an image I(x, y), the
Hessian matrix H and its eigenvalues λ1, λ2 guide the filter response R, which
is zero for λ2 > 0 and

√
λ2
1 + λ2

2 otherwise. By adjusting the scale σ, the filter
adapts to features of various sizes, optimizing the response Rσ across scales to
highlight relevant structures, thus aiding in medical image analysis.

2.2 Manuscript Generation

Radiology reports in publicly available datasets vary due to individual writing
styles, affecting the consistency of sentence embeddings and their use in con-
trastive learning. We adopt triplet extraction from MedKLIP [30] for uniformity,
converting extracted triplets into new reports. This approach ensures semantic
consistency, facilitating the extraction of positive and negative pairs, and allows
for binary answers in observations and verdicts, useful for masked pre-training.
Figure 3 provides an overview of our methodology.

Fig. 3. Our report generation process starts with the triplet extraction method from
MedKLIP, as outlined in part (a). Instead of adopting the Knowledge-enhanced Triplet
Encoding, we transform these into a textual report, embedding it sentence by sentence.
This approach facilitates masked pre-training by providing binary labels for each ob-
servation and the verdict.

Report Pre-processing Following MedKLIP [30], we apply RadGraph [14],
a medical Named Entity Recognition (NER) tool, to streamline radiology re-
ports into triplets. The NER identifies and classifies medical terms as "entity"
(clinical findings) or "position" (body location), and assigns an "exist" status to
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indicate the presence, absence, or uncertainty of clinical observations. This pro-
cess, generating triplets like entity, position, exist, simplifies sentence structures
in reports while retaining crucial information, leveraging the Triplet Extraction
method in medical Visual Language Processing (VLP).

2.3 Conditional Reconstruction

Our method aims to reconstruct an original signal in one modality (image or
text) from its masked version using unmasked information from the other modal-
ity. We follow notations used by MaskVLM [18] as we build on them. Specifically,
for a medical image I and its masked form Im, with accompanying unmasked text
T , the goal is to retrieve I utilizing (Im, T ). In reverse, with an unmasked image
I and masked text Tm, the objective is to recover T with (I, Tm). We employ
image and text encoders fim and ftxt for feature extraction. The cross-modality
encoders gim and gtxt, leveraging context from unmasked modalities, reconstruct
the signals through decoders dim and dtxt for images and texts, respectively. This
reconstruction process is optimized by a multimodal joint modeling loss LMVLM ,
promoting focus on unmasked modality features for accurate reconstruction:

LMVLM =E(I,T )∼D

[
H

(
yMT , ϕM

txt(I, T |m)
)
+

∥∥∥∥ 1

Ω(IM )

(
IM − ϕM

im(Im, T ′)
)∥∥∥∥

1

]
(1)

where ϕtxt and ϕim represent the decoding processes for text and image modali-
ties, respectively, focusing on masked regions. This process enables learning from
cross-modal interactions to enhance reconstruction accuracy.

2.4 Multi-Modal Alignment

To enhance masked signal reconstruction, we incorporate cross-modal alignment
through two additional objectives. The first, image-text contrastive (ITC) learn-
ing [23], projects image and text encoder outputs into a shared space, using
separate fully-connected layers. This process is formulated as minimizing the
contrastive loss LITC , encouraging agreement between matched image-text pairs
in embedding space. However, variability in radiology report styles may affect the
identification of positive and negative pairs, as observed in our ablation study.

The ITC loss for the k-th image-text pair, with batch size N and temperature
τ , is given by:

LITC = − 1

N

N∑
k=1

[
log

exp(zkim · zktxt/τ)∑N
n=1 exp(z

n
im · zktxt/τ)

+ log
exp(zkim · zktxt/τ)∑N
n=1 exp(z

k
im · zntxt/τ)

]
,

(2)

The second objective, image-text matching (ITM) classification [5], predicts
the alignment of image-text pairs by element-wise multiplication of cross-modality
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encoder outputs, followed by classification. The ITM loss LITM ensures super-
vised alignment across modalities:

LITM = E(I,T )∼D

[
H(yITM , gitmcross(z

cross
im , zcrosstxt ))

]
. (3)

The total pre-training loss L combines all losses:

L = LMVML + LITC + LITM . (4)

Model fine-tuning is performed for each downstream task over a few epochs,
alongside zero-shot evaluations following prior work [6,30].

3 Experimental Analysis

3.1 Datasets

We use datasets that have been used in recent approaches [12,6,30] namely:
MIMIC-CXR v2 [16], RSNA Pneumonia Detection [25], SIIM-ACR Pneumotho-
rax [19], NIH Chest X-Ray Dataset [27], CheXpert [13], COVIDx CXR [22] and
Edema Severity [2]. We follow the evaluation protocol of MedKlip [30].

3.2 Implementation Details

The model utilizes a ViT-B pre-trained on ImageNet for image processing and
ClinicalBERT for text, resizing images to 224x224 and setting a common latent
dimension of 768. Training is conducted on 4 NVIDIA Tesla V100 GPUs with a
batch size of 128, using AdamW optimizer with a 0.05 weight decay. Unlike fixed
masking ratios, the model adapts the mask ratio based on the input, using a 15%
ratio for text that increases to 30% when paired with images. The model is pre-
trained for 100 epochs, considerably less than the 800 epochs in similar studies,
and fine-tuned for 10 epochs with a specific learning rate strategy, including a
warm-up to 3e-4 followed by a cosine scheduler for the pre-training phase, and
fixed learning rates of 1e-5 during fine-tuning. Extending training to 300, 500,
or 800 epochs did not improve accuracy.

3.3 Classification

Semi and Fully Supervised We conduct semi and fully supervised classifica-
tion on RSNA Pneumonia, SIIM-ACR, and CheXpert datasets, varying labeled
data from 1% to 100%. Results, including mean and standard deviation over 5
runs using PRIOR [6], are in Table 1. M&M surpasses SOTA by up to 2.64%.

Zero-Shot We assess zero-shot classification on RSNA Pneumonia, SIIM-ACR,
and NIH Chest X-Ray datasets with state-of-the-art models, showcasing our
model’s generalization across various clinical sources. Our approach achieves
consistent performance enhancements, attributed to domain adaptation as dis-
cussed in MedKLIP [30]. Results in Table 2 show our M&M model outperforming
existing methods by up to 3.16%, following pre-training on MIMIC-CXR and
up to a 3.29% improvement on the novel COVID-19 disease in Table 3.
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RSNA Pneumonia SIIM-ACR CheXpert
Methods 1% 10% 100% 1% 10% 100% 1% 10% 100%

MoCo [11] 82.33 85.22 87.90 75.49 81.01 88.43 78.00 86.27 87.24
SimCLR [4] 80.18 84.60 88.07 74.97 83.21 88.72 67.41 86.74 87.97

ConVIRT [31] 83.98 85.62 87.61 84.17 85.66 91.50 85.02 87.58 88.21
GLoRIA [12] 84.12 86.83 89.13 85.05 88.51 92.11 83.61 87.40 88.34
BioViL [1] 81.95 85.37 88.62 79.89 81.62 90.48 80.77 87.56 88.41
LoVT [21] 85.51 86.53 89.27 85.47 88.50 92.16 85.13 88.05 88.27
PRIOR [6] 85.74 87.08 89.22 87.27 89.13 92.39 86.16 88.31 88.61

MedKLIP [30] 87.31 87.99 89.31 85.27 90.71 91.88 86.24 88.14 88.68
M&M (Ours) 88.11 89.44 91.91 88.81 91.15 93.88 88.45 90.02 90.88

Table 1. Comparing supervised classification results obtained by fine-tuning on RSNA
Pneumonia Detection [25], SIIM [19] and CheXpert [13]. All methods are trained on
different portions of the training set from 1% to 100% and evaluated using AUC-ROC.
Following PRIOR [6] each reported value is the average of five runs along with the
standard deviation.

RSNA Pneumonia SIIM-ACR NIH Chest X-Ray
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑
ConVIRT [31] 80.42 58.42 76.11 64.31 43.29 57.00 61.01 16.28 71.02
GLoRIA [12] 71.45 49.01 71.29 53.42 38.23 40.47 66.10 17.32 77.00
BioViL [1] 82.80 58.33 76.69 70.79 48.55 69.09 69.12 19.31 79.16
PRIOR [6] 85.58 62.91 77.85 86.62 70.11 84.44 74.51 23.29 84.41
MedKLIP [30] 86.94 63.42 80.02 89.24 68.33 84.28 76.76 25.25 86.19
M&M (Ours) 88.91 66.58 83.14 91.15 71.58 86.15 77.92 27.55 88.52

Table 2. Comparing recent state-of-the-art methods on zero-shot classification task.
We use AUC, F1 and ACC scores for comparison. Following MedKLIP [30] for evalua-
tion on NIH Chest X-Ray, the metrics all refer to the macro average on the 14 diseases.

Methods AUC↑ F1↑ ACC↑
ConVIRT [31] 52.08 69.02 52.66
GloRIA [12] 66.59 70.07 60.83
BioViL [1] 53.82 69.10 53.75

MedKLIP [30] 73.96 76.70 70.06
M&M (Ours) 75.15 77.89 73.35

Table 3. Performance on Covid-19 CXR.

Methods AUC↑ F1↑ ACC↑
ConVIRT [31] 77.00 56.76 69.19
GLoRIA [12] 77.74 57.98 71.45
BioViL [1] 75.40 55.72 69.14
MedKLIP [30] 78.98 58.26 72.80
M&M (Ours) 80.71 60.18 73.91

Table 4. Performance comparison on
Edema severity grading multi-class task.

3.4 Grading

In addition to diagnosis, determining disease severity is essential. We refine pre-
trained features for a multi-category classification task using the Edema Severity
dataset, which includes classes 0 to 3, each indicating a different severity stage.
The average scores across all severity levels are shown in Table 4.

3.5 Segmentation

Table 5 presents our fine-tuning experiments for segmenting three distinct dis-
eases, where we utilize 1%, 10%, and 100% of the available data. Regardless
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of the varying image distributions associated with each disease, our techniques
consistently outperform current leading methods. We see significant gains in
particular when data is scarce outperforming previous works by up to 2.96%.

Methods RSNA Pneumonia SIIM-ACR Covid-19
1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 43.47 60.47 70.68 21.33 33.23 74.47 14.81 23.67 32.28
ConVIRT [31] 57.06 64.91 72.01 54.06 61.21 73.52 19.95 27.24 37.37
GLoRIA [12] 65.55 69.07 73.28 56.73 57.78 76.94 18.89 28.09 38.69
BioVil [1] 68.24 70.38 72.49 62.67 69.98 78.49 21.13 32.39 41.62
PRIOR [6] 70.11 70.88 74.43 66.14 71.24 78.85 23.66 34.72 43.01
MedKLIP [30] 70.64 71.62 75.79 66.59 72.10 79.37 24.45 35.39 43.99
M&M (Ours) 72.28 73.11 76.68 69.55 73.47 80.28 28.25 37.32 45.04

Table 5. Evaluating Dice scores against leading methods for segmentation tasks, we
analyze diseases with 1%, 10%, 100% labeled data, improving across all scenarios.

3.6 Ablation Study

We assess the effects of different image masking techniques—no masking, random
patch masking [10], attention-guided masking (AttMask)[17], and salient patch
selection (AutoMAE)[3]—and validate our manuscript generation approach. Our
method boosts performance by as much as 8.06%, as Table 6 illustrates. For
report generation, we examine four methods: original reports, extracted triplets,
knowledge-enhanced triplets (KE-Triplet) via MedKLIP, and converting triplets
into manuscripts, using the same masking for all (Table 7). KE-Triplet leads,
surpassing even MedKLIP by up to 1.97%, highlighting our model’s efficacy on
the NIH Chest X-Ray dataset.

Methods AUC↑ F1↑ ACC↑
MaskVLM [18] 58.87 14.96 66.69
No Masking 61.48 16.33 70.54
MAE [10] 68.84 18.85 75.59

AttMask [17] 71.85 20.84 77.81
AutoMAE [3] 73.18 22.81 80.46

M&M (Ours) 77.92 27.55 88.52
Table 6. Ablation study on masking
strategy, focusing on zero-shot setting to
directly assess learned features.

Methods AUC↑ F1↑ ACC↑
Original Report 69.95 20.04 77.71

Triplet 73.48 24.42 82.89
KE-Triplet 76.84 26.11 86.55

M&M (Ours) 77.92 27.55 88.52
Table 7. Ablation study on manuscript
generation method selection, focusing
solely on the zero-shot setting to evalu-
ate the effectiveness of learned features.
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4 Conclusion

Medical contrastive learning is challenged by inconsistent semantics and mor-
phology in sample text pairs, causing semantic drifts. Report variability from
multiple authors further complicates semantic interpretation. To address this,
we propose a two-step approach. First, standardize reports into triplets. Then,
convert triplets into binary “observations” that guide towards “verdicts”. For im-
ages, we use Meijering-based masking for pre-training instead of random masking
to capture local context critical for medical images. Our multimodal contrastive
learning framework, combining the standardized text and tailored visual rep-
resentations, advances medical image analysis, achieving new state-of-the-art
performances on multiple different downstream tasks. While the filter improves
the performance in the discussed X-ray data, future work would be to test this
on other modalities, such as MRI, which is noisier and more heterogeneous.
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