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Abstract. In clinical practice, medical image segmentation provides
useful information on the contours and dimensions of target organs or
tissues, facilitating improved diagnosis, analysis, and treatment. In the
past few years, convolutional neural networks (CNNs) and Transformers
have dominated this area, but they still suffer from either limited recep-
tive fields or costly long-range modeling. Mamba, a State Space Sequence
Model (SSM), recently emerged as a promising paradigm for long-range
dependency modeling with linear complexity. In this paper, we introduce
a Large Kernel vision Mamba U-shape Network, or LKM-UNet, for med-
ical image segmentation. A distinguishing feature of our LKM-UNet is its
utilization of large Mamba kernels, excelling in locally spatial modeling
compared to small kernel-based CNNs and Transformers, while main-
taining superior efficiency in global modeling compared to self-attention
with quadratic complexity. Additionally, we design a novel hierarchical
and bidirectional Mamba block to further enhance Mamba’s global and
neighborhood spatial modeling capability for vision inputs. Comprehen-
sive experiments demonstrate the feasibility and the effectiveness of us-
ing large-size Mamba kernels to achieve large receptive fields. Codes are
available at https://github.com/wjh892521292/LKM-UNet.

Keywords: Medical Image Segmentation · UNet · Mamba.

1 Introduction

Efficiently segmenting biomedical objects of interest (e.g., lesions) in large-size
2D/3D images significantly enhances downstream clinical practice and biomedi-
cal research. Currently, automatic segmentation models, leveraging popular deep
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learning backbones such as convolutional neural networks (CNNs) and Trans-
formers [19], have reduced manual annotation requirements but may incur con-
siderable computational costs or overlook specific details. CNN-based models
(e.g., UNet [18]) typically seek to extract global patterns by hierarchically stack-
ing small kernels, excelling in pixel-level feature extraction but being ineffective
in learning long-range dependencies due to their limited receptive fields [14].
Though recent investigations [3] have shown the effectiveness of large convolu-
tion kernels, it often requires specific optimization strategies and complicated
inference-time model reformulation. In contrast, Transformer-based algorithms
offer powerful long-range modeling but sacrifice pixel-level spatial modeling [21,
20]. Further, a key component, the self-attention module, incurs quadratic com-
plexity and cannot handle excessive tokens [9], resulting in the need to pack pix-
els into windows and hence sacrificing resolution information. Especially, many
studies have shown that Transformers achieve the best trade-off at a 7×7 window
size as a smaller window causes more computation and a larger window causes
a significant drop in performance [13, 1]. Later studies have investigated CNN-
Transformer hybrid models or approaches for intra-patch locality modeling [20,
23]. However, due to the typically larger sizes of medical images compared to
natural images, how to reduce the interaction complexity between global patches
and how to enlarge the receptive field of local spatial modeling are still open.

Recently, structured state space sequence models (SSMs) [6] (e.g., Mamba [5])
have emerged as a powerful long-sequence modeling approach with linear com-
plexity in terms of input size, shedding light on efficient modeling of both local
and global dependencies. In contrast to the conventional self-attention approach,
SSMs enable each element in a 1D array (e.g., a text sequence) to interact with
any of the previously scanned samples through a compressed hidden state, effec-
tively reducing the quadratic complexity to linear. SSMs were devised to address
natural language processing (NLP) tasks [4], but also show effectiveness in com-
puter vision [25]. For medical image segmentation, for example, U-Mamba [5] and
SegMamba [22] introduced SSM-CNN hybrid models that directly apply Mamba
to efficiently model long-range dependencies at the pixel-level. Although effec-
tive, the potential and deficiency of Mamba are still not yet fully explored and
resolved, in three aspects. First, benefiting from its linear complexity, Mamba
possesses more flexibility in space allocation. That is, unlike the stereotypes of
previous methods based on small convolution kernels or size-constrained self-
attention windows, Mamba is promising in endowing the model with an ability
in large receptive field spatial modeling, which has been neglected in the known
Mamba-based approaches. Second, Mamba is a unidirectional sequence model-
ing method that lacks positional awareness and focuses more on posterior tokens.
Third, the original Mamba was proposed for 1D sequence modeling, which is
not suitable for computer vision tasks that require spatial-aware understanding.
Mainly due to local adjacent spatial pixels becoming discontinuous, Mamba can
suffer forgetting problems and inefficient local modeling capabilities.

In this paper, we propose a Large Kernel Mamba U-shape Network (LKM
-UNet) for 2D and 3D medical image segmentation. LKM-UNet utilizes the power-
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ful sequence modeling capabilities and linear complexity of Mamba to implement
large receptive fields by assigning large kernels (windows) to SSM modules. Fur-
ther, we design a novel hierarchical and bidirectional large kernel Mamba block
(LM block) to enhance the representation modeling capability of SSMs. The
bidirectional Mamba design is used for location-aware sequence modeling, re-
ducing the weight impact of the input order. The hierarchical Mamba design is
composed of two types of SSM operations: (i) pixel-level SSM (PiM) and (ii)
patch-level SSM (PaM). PiM captures the neighborhood and local-scope pixel
information by large kernel SSM and avoids the forgetting problem that occurs
in SSMs due to discontinuity of adjacent patches after tokenization. PaM deals
with long-range dependency modeling and global patch interaction.

Our main contributions are as follows. (1) We propose a Large Kernel Mamba
UNet (LKM-UNet) for 2D/3D medical image segmentation. (2) We assign ker-
nels of large receptive fields to SSM layers to enable the model to possess the
capability of large spatial modeling. (3) We design a bidirectional Mamba for
location-aware sequence modeling. (4) We propose a novel hierarchical Mamba
module composed of pixel-level SSM (PiM) and patch-level SSM (PaM), enhanc-
ing local-neighborhood pixel-level and long-range global patch-level modeling.

2 Preliminaries: SSM Models

SSM-based models, namely the structured state space sequence models (S4) and
Mamba [5], all evolved from the continuous system that maps a 1-dimensional
function or sequence x(t) → y(t) ∈ R through a hidden state h(t) ∈ RN . This
process can be represented as the following linear ordinary differential equation:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where A ∈ RN×N is a state matrix and B,C ∈ RN are projection parameters.
S4 and Mamba are discrete versions of the aforementioned continuous system,

which include a timescale parameter ∆ to transform the continuous parameters
A,B to discrete parameters A,B. Typically, the zero-order hold (ZOH) is em-
ployed as the discretization rule and can be defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

After the discretization, the discretized version of Eq. (1) can be defined as :
h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t).
(3)

Then the output is computed through a global convolution, defined as:

K = (CB,CAB,CA
L−1

B),

y = x ∗K,
(4)

where L is the length of the input sequence x and K ∈ RL is a structured
convolutional kernel.
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Fig. 1. An overview of our proposed LKM-UNet.

3 Method

In this section, we first introduce the overall architecture of LKM-UNet. Subse-
quently, we elaborate the core component, the LM block.

3.1 LKM-UNet

An overview of LKM-UNet is given in Fig. 1. Specifically, except for the common
UNet composition of a depth-wise convolution, an encoder with downsampling
layers, a decoder with upsampling layers, and skip-connection, LKM-UNet im-
proves the structure of UNet with proposed large kernel Mamba (LM) blocks
inserted into the encoder. Given a 3D input image with a resolution of C ×D×
H × W , the depth-wise convolution first encodes the input into a feature map
F0 ∈ R48×D

2 ×H
2 ×W

2 . Then the feature map F0 is fed into each LM block and
the corresponding down-sampling layers, and multi-scale feature maps are ob-
tained. An LM block contains two Mamba modules: pixel-level SSM (PiM) and
patch-level SSM (PaM). For the lth layer, the process can be formulated as:

F′
l = PiM(Fl), F′′

l = PaM(F′
l), Fl+1 = Down-sampling(F′′

l), (5)

where PiM and PaM denote pixel-level SSM and patch-level SSM, respectively.
Down-sampling denotes the down-sampling layers. After each stage, the pro-
duced feature map Fl+1 is encoded to (2Cl,

Dl

2 , Hl

2 , Wl

2 ), where Cl, (Dl, Hl,Wl)
represent the channel and resolution of feature map Fl. As for the decoder part,
we adopt a UNet decoder and residual block with skip connections for upsam-
pling and predicting the final segmentation masks.
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(I) CNN

(II) Transformer (III) LKM-UNet
PiM PaM

(a) Receptive field : CNN vs. Transformer vs. LKM-UNet (b) Vanilla Mamba (left) vs. Bidirectional Mamba (right)

Fig. 2. (a) Respective field comparison among CNN, Transformer, and our proposed
LKM-UNet. CNNs often use small kernels (like 3 × 3), and Transformers often use 7 ×
7 sized kernels (windows). Our LKM-UNet can scale up kernel size to 40 × 40. (b)
Scanning order comparison of vanilla Mamba vs. our proposed bidirectional Mamba.

3.2 LM block

LM block is our core component used for further spatial modeling of feature maps
of different scales at each stage. Different from the previous methods that use
CNN for local pixel-level modeling and Transformer for long-range patch-level
dependency modeling, an LM block can accomplish pixel-level and patch-level
modeling simultaneously, benefiting from the linear complexity of Mamba. More
critically, a lower complexity allows setting larger kernels (windows) to obtain
bigger receptive fields, which will improve the efficiency of local modeling, as
shown in Fig. 2(a). Specifically, LM block is a hierarchical design that consists
of pixel-level SSM (PiM) and patch-level SSM (PaM); the former is used for
local-neighborhood pixel modeling and the latter is used for global long-range
dependency modeling. Besides, each Mamba layer in an LM block is bidirectional,
which is proposed for location-aware sequence modeling.
Pixel-level SSM (PiM). Since Mamba is a continuous model, the discrete
nature of input pixels can weaken the correlation modeling of locally adjacent
pixels. Hence, we propose a pixel-level SSM to split the feature map into multiple
large sub-kernels (sub-windows) and perform SSM operations on the sub-kernels.
We first equally divide a whole feature map into non-overlapping sub-kernels
for 2D or sub-cubes for 3D. Take 2D for example. Given an input of H × W
resolution, we divide the feature map into sub-kernels of size m×n each (m and
n can be up to 40). Without loss of generality, we assume that H/m and W/n
are both integers. Then we have HW

mn sub-kernels, as shown in Pixel-level SSM of
Fig. 1. Under this scheme, when these sub-kernels are sent into a Mamba layer,
the local adjacent pixels will be input continuously into SSM; thus, the relation
between local-neighborhood pixels can be better modeled. Moreover, under the
large kernel partition strategy, the receptive fields are enlarged and the model
can obtain more details of the local pixels. However, the image is divided into
non-overlapping sub-kernels. Hence, we need a mechanism for communication
between different sub-kernels, for long-range dependency modeling.
Patch-level SSM (PaM). We introduce a patch-level SSM layer to impart
information among different sub-kernels. As shown in Patch-level SSM of Fig. 1,
a feature map F′

l of resolution H × W first passes through a pooling layer of
size m × n to allow important information for each of the HW

mn sub-kernels to
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be summarized into a single representative. Thus, we obtain aggregate maps
Zl with HW

mn representatives, which are then used to communicate among the
sub-kernels through Mamba for global-range dependency modeling. After the
interaction in Mamba, we unpooling the aggregate maps back to the same size
as the initial feature map F′

l, and apply a residual connection. The process of
F′′

l = PaM(F′
l) in Eq. (5) can be carried out as:

Wl = Pooling(F ′
l ), W′

l = Bi-Mamba(Wl), F′′
l = Unpooling(W′

l), (6)

where Pooling and Unpooling denote the pooling layer and unpooling layer,
respectively. Bi-Mamba denotes the proposed bidirectional Mamba layer.
Bidirectional Mamba (BiM). Different from the vanilla Mamba block which
is based on forward-only scan direction SSM layers, each SSM layer (including
PiM and PaM) in our LM block is bidirectional. Fig. 2(b) shows the differences.
In the original Mamba, as a continuous model, some information forgetting oc-
curs on the elements entered earlier, and the latest elements that enter into
Mamba will retain much more information. Thus, the original Mamba with a
single scanning direction will focus more on the posterior patches, rather than
the center areas of the feature maps often with more organs and lesions. To this
end, we propose a bidirectional Mamba structure by performing both forward
and backward scanning at the same time and superimposing the output results.
The detailed structure is shown in the left part of Fig. 1. BiM has two advan-
tages. First, the model can focus more on the informative patches in the center
areas of the image likely with more organs and lesions, rather than the corner
areas. Second, for each patch, the absolute position information and relative
position information with other patches can be well modeled by the network.

4 Experiments

4.1 Datasets

We conduct experimental comparisons with state-of-the-art methods on two
datasets for 2D and 3D segmentation tasks to validate the effectiveness and
scalability of LKM-UNet.
Abdomen CT. Abdomen CT is a publicly available 3D multi-organ segmen-
tation dataset comprising 100 CT cases from the MICCAI 2022 FLARE Chal-
lenge [16], including 13 types of abdominal organs (liver, spleen, pancreas, right
kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava,
right adrenal gland, left adrenal gland, and duodenum). The size of a 3D CT
image is 40 × 224 × 192. 50 cases from the MSD Pancreas dataset with anno-
tations from AbdomenCT-1K are used for training, and another 50 cases from
different medical centers [2] are used for testing.
Abdomen MR. Abdomen MR is a publicly available 2D segmentation dataset
comprising 110 MRI cases from the MICCAI 2022 AMOS Challenge [11], includ-
ing 13 types of abdominal organs (the same as the Abdomen CT dataset). The
size of a 2D MRI image is 320 × 320. Following the previous work [15, 22], 60
annotated cases are used for training, and another 50 cases are used for testing.
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Table 1. Quantitative segmentation results on the 3D Abdomen CT dataset and 2D
Abdomem MR dataset.

3D Abdomen CT 2D Abdomen MR
Method

DSC ↑ NSD ↑ DSC ↑ NSD ↑

SegResNet [17] 79.27 82.57 73.17 80.34
nnUNet [10] 86.15 89.72 74.50 81.53

UNTER [8] 68.24 70.04 57.47 63.09
SwinUNTER [7] 75.94 76.63 70.28 76.69
nnFormer [24] 78.34 81.45 72.79 79.63

U-Mamba (concurrent) [15] 86.38 89.80 76.25 83.27

LKM-UNet(Ours) 86.82 90.02 77.35 83.80

4.2 Implementation Setup

Our LKM-UNet is implemented on PyTorch 1.9.0 based on the nnU-Net frame-
work. All the experiments are conducted on an NVIDIA GeForce RTX 3090
GPU. The batch size in training is 2 for the 3D dataset (Abdomen CT) and 24
for the 2D dataset (Abdomen MR). The Adam [12] optimizer with momentum
= 0.99 is used. The initial learning rate is 0.01 with a weight decay of 3e-5. The
maximum training epoch number is 1000. For the Abdomen CT dataset, the
stage is 6 but the dimensions are not consistent; thus we set the rectangle kernel
size with three dimensions to [20, 28, 24], [20, 28, 24], [10, 14, 12], [10, 14, 12],
[5, 7, 6], and [5, 7, 6] for each stage. For the Abdomen MR dataset, the stage is
7 and the kernel size is 40, 20, 20, 10, 10, 5, and 5 for each stage.

4.3 Overall Performances

The baseline models include three types of representative networks: CNN-based
networks (nnU-Net [10] and SegResNet [17]), Transformer-based networks (UN-
ETR [8], SwinUNETR [7], nnFormer [24]), and the latest Mamba-based network
(U-Mamba [15]). For fair comparison, we also implement all the models in the
nnU-Net framework, and use the default image pre-processing. Table 1 presents
the results. Compared to both CNN-based and Transformer-based segmenta-
tion methods, our proposed LKM-UNet achieves improved performances in both
DSC and NSD, which indicates that the global modeling capabilities of Mamba
are critical to medical image segmentation. Note that, compared to U-Mamba
which simply applies Mamba as a global modeling adapter, LKM-UNet exhibits
improvements over U-Mamba, validating the effectiveness of our bidirectional
and hierarchical Mamba designs. These results also demonstrate the potential
of Mamba in global and local feature modeling with larger receptive fields.

4.4 Is the Kernel Size of LKM-UNet Important?

To validate Mamba’s large spatial modeling potential, we explore LKM-UNet’s
performance in different kernel size settings. Table 2 shows the results on the
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Table 2. Performances of LKM-UNet in three different kernel size settings. The kernel
size sequence indicates the kernel size in each stage (the total number of stages is 7).

Kernel size [10, 5, 5, 5, 5, 5, 5] [20, 10, 10, 10, 5, 5, 5] [40, 20, 20, 10, 10, 5, 5]

DSC 75.89 76.45 77.35

NSD 82.26 82.78 83.80

Table 3. Performances of LKM-UNet with different sub-modules. PiM = Pixel-level
SSM. PaM = Patch-level SSM. BiM = Bidirectional Mamba.

Method Baseline Only PiM Only PaM PiM + BiM PaM + BiM PiM + PaM PiM + PaM + BiM

DSC 74.50 76.82 76.22 76.90 76.73 77.10 77.35

NSD 81.53 83.05 82.59 83.31 82.94 83.54 83.80

Abdomen MR dataset. Comparing the performances of the three kernel-size
settings, one can see that LKM-UNet with larger kernel sizes achieves better per-
formances. This indicates that large receptive fields are critical for medical image
segmentation which can be achieved with Mamba due to its linear complexity.

4.5 Ablation Study

We conduct ablation experiments on the Abdomen MR dataset to validate the
effect of each key component in our LKM-UNet, shown in Table 3. Both PiM and
PaM provide improvements for LKM-UNet over the baseline model, validating the
superiority of PiM and PaM in local pixel-level modeling and global modeling,
respectively. Notably, the model with PiM gains more improvements, suggesting
that enlarging the receptive field of local modeling is a key to improving model
performance. After introducing BiM, the performance of LKM-UNet further im-
proves, which shows the importance of bidirectional Mamba for location-aware
modeling. Finally, LKM-UNet with all the components achieves the best perfor-
mance, further demonstrating our method’s effectiveness and its components.

4.6 Effective Receptive Field Visualization

To show more details of receptive field, we exhibit the effective receptive field
(ERF) [14] of other methods and LKM-UNet in Fig. 3. CNN-based methods
focus more on local feature extraction, while Transformer-based methods have
a wider range of ERF. Although U-Mamba utilize Mamba to obtain globally
ERF, it weakens some local attentions. By contrast, our proposed LKM-UNet
with large kernel Mamba achieves larger ERF both in global and local aspects.

5 Conclusions

In this paper, we introduced a new Mamba-based UNet model for medical im-
age segmentation, achieving large kernel spatial modeling. Further, we designed
a bidirectional and hierarchical SSM to enhance the capacities of Mamba in
local and global feature modeling. Comprehensive experiments on multi-organ
segmentation datasets demonstrated the effectiveness of our proposed method.
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and our proposed LKM-UNet.
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