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Abstract. To achieve superior performance, deep learning relies on co-
piousness, high-quality, annotated data, but annotating medical images is
tedious, laborious, and time-consuming, demanding specialized expertise,
especially for segmentation tasks. Segmenting medical images requires
not only macroscopic anatomical patterns but also microscopic textural
details. Given the intriguing symmetry and recurrent patterns inher-
ent in medical images, we envision a powerful deep model that exploits
high-level context, spatial relationships in anatomy, and low-level, fine-
grained, textural features in tissues in a self-supervised manner. To real-
ize this vision, we have developed a novel self-supervised learning (SSL)
approach called ASA to learn anatomical consistency, sub-volume spatial
relationships, and fine-grained appearance for 3D computed tomogra-
phy images. The novelty of ASA stems from its utilization of intrinsic
properties of medical images, with a specific focus on computed tomog-
raphy volumes. ASA enhances the model’s capability to learn anatom-
ical features from the image, encompassing global representation, local
spatial relationships, and intricate appearance details. Extensive experi-
mental results validate the robustness, effectiveness, and efficiency of the
pretrained ASA model. With all code and pretrained models released
at GitHub.com/JLiangLab/ASA, we hope ASA serves as an inspiration
and a foundation for developing enhanced SSL models with a deep under-
standing of anatomical structures and their spatial relationships, thereby
improving diagnostic accuracy and facilitating advanced medical imaging
applications.
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1 Introduction

SSL has emerged as a transformative paradigm which enables the deep learn-
ing model to autonomously learn from data without expert labels, as annotating
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(a) Three patients across 3 views (b) An overview of ASA

Fig. 1: (a) shows CT views from three different patients, highlighting signifi-
cant anatomical similarities. To illustrate anatomical patterns, the axial view
is divided into 35 non-overlapping grids. The inferior vena cava appears across
grids #17 and #18, and the aorta is consistently located in grid #18 for all
patients. The liver, the most prominent organ, occupies multiple grids shared by
all patients. This uniformity underscores the importance of learning spatial rela-
tionships and high-level anatomical patterns. (b) provides an overview of ASA,
which captures spatial relationships via order prediction, fine-grained features
via appearance recovery, global features by maximizing agreement between two
same-patient views, and local features by aligning the shared information within
two views.

medical images is a laborious, time-consuming task that demands specialized ex-
pertise [10, 7]. Medical images often exhibit intriguing symmetry and recurrent
patterns. As depicted in Fig. 1a, significant similarities are evident in axial, coro-
nal, and sagittal views across diverse patients in CT images, and major organs
appear in the same location. These similarities suggest that a robust model is
expected to capture the overarching concept of shared appearances and features
(i.e., anatomical structures) in CT volumes across all patients. By leveraging
the symmetry and recurring nature of body structures, the model is expected
to effectively identify high-level anatomical structures and intra-volume spatial
relationships. However, despite the significant similarities observed across all CT
volumes, there are still subtle differences present in each individual. Therefore,
the model must also capture fine-grained features to discern and account for
patient-specific distinctions.

In organ segmentation, illustrated in Fig. 1a, larger organs such as liver and
spleen exhibit larger regions of interest, while smaller organs like the esophagus
and adrenal glands have smaller region of interest, necessitating more metic-
ulous attention. An effective model must capture organ-specific relationships
and appearance features, but also deliver precise pixel-level details of small re-
gions. Therefore, a crucial question naturally arises: How to develop an SSL
framework that enables the model to acquire nuanced fine-grained features, com-
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prehend high-level global features, emphasize local-level embeddings, and capture
contextual relationship features? To address this question, we have developed
ASA to learn anatomical consistency, sub-volume spatial relationships, and fine-
grained appearance. As illustrated in Fig. 1b, ASA incorporates four learning
perspectives: (1) capturing sub-volume relationships through 3D sub-volume or-
der prediction, (2) depicting fine-grained features within volumes through volume
appearance recovery, (3) comprehending high-level global features by maximiz-
ing the agreement between two spatially related views using the student-teacher
network, and (4) acquiring local features at the sub-volume level by aligning the
shared local views within two spatially related views.

ASA is different from the distorted image recovery task [12, 19, 21] by focus-
ing on reconstructing the correct volume from a set of displaced sub-volumes to
capture fine-grained volume appearances and underlying structures. ASA is also
distinguished from contrastive learning methods [1, 11] which aim to maximize
agreement between two positive views, by further aligning the shared local views
within these views. Moreover, ASA diverges from image context learning [17,
10, 2] by incorporating a student-teacher network to optimize global and local
consistency between two spatially-related views, thereby facilitating the acquisi-
tion of generalized volume features. Inspired by [9], where the cyclic pretraining
strategy and the student-teacher networks have been demonstrated effective in
accumulating knowledge across various tasks, ASA further introduces an alter-
nate learning strategy to enhance SSL from multiple perspectives. Through this
work, we have made the following contributions:

1. A novel vision transformer-based SSL framework for 3D medical images
that simultaneously captures high-level anatomical information, intra-volume
relationships, and fine-grained appearance features.

2. Introduction of an alternate pretraining strategy involving a student-
teacher network to facilitate learning from multiple perspectives.

3. Comprehensive experiments showcasing the transferability of ASA across
diverse single-organ and multi-organ segmentation tasks, surpassing the perfor-
mance of multiple supervised and SSL methods.

4. An efficient pretrained model that encapsulates rich semantic information,
demonstrating superior label efficiency.

2 Method

To develop a comprehensive understanding of anatomical structures depicted in
CT images, particularly focusing on spatial relationships and fine-grained fea-
tures, as demonstrated in phase 1 of Fig. 2, ASA incorporates the following
components: (1) a sub-volume order prediction module to capture intra-volume
spatial relationships, and (2) a volume appearance recovery module to repre-
sent volume-wise fine-grained features. Additionally, to establish a high-level
semantic context within a CT image, ASA employs the student-teacher learning
paradigm, (3) aligning the global features extracted by the student’s encoder
with permuted volumes to those of the teacher’s with original volumes. Fur-
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Fig. 2: ASA accquares anatomical knowledge through two learning phases. phase
1 focuses on capturing sub-volume relationships via sub-volume order prediction,
depicting fine-grained features via volume appearance recovery, and constructing
high-level semantic context of an image via global feature alignment between the
permuted and original volumes. phase 2 enhances ASA’s ability to summarize
global features and delineate local features by optimizing the agreement between
two spatially related views through the student-teacher learning paradigm. Dur-
ing phase 1, a CT image is divided into sub-volumes whose order is distorted
using Fperm(·) before being fed into the student model. The model is then trained
to predict the original sub-volume order using the loss Lvop, and to recover the
volume’s original appearance using the loss Lar. Additionally, the sub-volumes
with the original order are fed into the teacher model to generate global features.
These features are then utilized to compute the consistency loss LgCons with the
features obtained from the student model. In phase 2, the CT image is upsam-
pled and cropped into two spatially related (overlapped) views using Fsrc(·).
Similar to (3), these two views are fed into the student and teacher models to
generate global features for maximizing agreement using LgCons. Concurrently,
the local features from the overlapped region of the two views are utilized to fur-
ther enhance agreement between the student and teacher models, employing the
loss LlCons. In both phases, the teacher model is updated after each iteration
using exponential moving average (EMA) based on the student ’s weights. To
stabilize and expedite training, the model alternates between these two learning
phases. Once trained, the teacher model is transferred to downstream tasks.

thermore, to enhance ASA’s ability to summarize global features and delineate
local features, as depicted in phase 2 of Fig. 2, (4) spatially related cropping
is employed, maximizing the agreement between teacher and student by align-



ASA 5

ing global and local features extracted from two spatially related crops. The
following details ASA, we provide detailed training pseudo-code in Appendix D.

Learning intra-volume relationship and fine-grained appearance. In
phase 1, depicted in Fig. 2, the original volume is given to the teacher net-
work, generating embedding of the original volume appearance, while the order-
distorted volume, obtained by Fperm(·), is fed to the student network. The objec-
tive of sub-volume order prediction is to anticipate the accurate 3D coordinates
of a sub-volume from its appearance (phase 1, (1)), while volume appearance
recovery endeavors to rebuild the original volume from an order-distorted one
(phase 1, (2)). Meanwhile, to stabilize the reconstruction process and ensure
maximum preservation of global features, we instruct the student network to
align the original appearance embedding generated by the teacher with the dis-
torted appearance embedding produced by the student network (phase 1, (3)).

Acquiring global and local embedding consistency from two related
views. As depicted in phase 2 of Fig. 2, two spatially related crops C1 and C2,
obtained by Fsrc(·), are input to the teacher and student networks, respectively.
The objective of global embedding consistency is to enhance the general embed-
ding level agreement between these two spatially related crops C1 and C2 (phase
2, (3)). To ensure alignment of the local embedding, we devise a sub-volume
matching process that maximizes agreement between the local embeddings, gen-
erated from two overlapped sub-volumes, showing near phase 2, (4).

Overall training scheme. As depicted in Fig. 2, we conduct pretraining of
the student network by alternately propagating the loss Lvopar = λvop ∗ Lvop +

λvar ∗ Lvar + λglobal ∗ Lglobal
θs,θt

in phase 1 and Lconsistency = λglobal ∗ Lglobal
θs,θt

+

λlocal ∗ Llocal
θs,θt

in phase 2, where λvop, λvar, λglobal and λlocal are regularization
factor contributing the importance of the learning task. θs and θt are student
and teacher networks, respectively. We optimize Lglobal

θs,θt
by minimizing l2 distance

between the predicted volume and the original volume, both Lglobal
θs,θt

and Llocal
θs,θt

are optimized by minimizing the l2 distance between two normalized volume and
sub-volume embedding, respectively. Finally, we define Lvop as a regression task
by minimizing l2 distance between the predicted sub-volume coordinates and
the randomly shuffled coordinates generated by Fperm(·). Only the student’s
encoder and decoder are updated by Lvopar, while Lconsistency updates only the
student’s encoder. The weights of all learnable networks are shared between the
two phases. Additionally, to summarize and consolidate the knowledge acquired
from the two phases, we introduce a teacher model with the same architecture
as the student. The teacher network is updated using EMA [16] based on the
learning experience of the student. Consequently, the learned sub-volume-wise
relationships, volume-wise fine-grained features, and overall context are refined
within the teacher model for future application-specific downstream tasks.
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Table 1: ASA excels in both supervised and SSL techniques, achieving the highest
average dice score in segmenting all organs on the BTCV dataset. With three
comprehensive learning objectives, ASA outperforms supervised competitors in
segmenting 9/12 organs and SSL competitors in another 9/12 organs.
Methods/ Organs‡ Spl RKid LKid Gall Eso Liv Sto Aor IVC Vins Pan AG Avg.

RandPatch† [14] 95.82% 88.52% 90.14% 68.31% 75.01% 96.48% 82.93% 88.96% 82.49% 73.54% 75.48% 66.09% 81.98%
TransBTS† [18] 94.59% 89.23% 90.47% 68.50% 75.59% 96.14% 83.72% 88.85% 82.28% 74.25% 75.12% 66.74% 82.12%
nnFormer† [20] 94.51% 88.49% 93.39% 65.51% 74.49% 96.10% 83.83% 88.91% 80.58% 75.94% 77.71% 68.19% 82.30%
UNETR† [4] 94.91% 92.10% 93.12% 76.98% 74.01% 96.17% 79.98% 89.74% 81.20% 75.05% 80.12% 62.60% 83.00%
nnU-Net† [5] 95.92% 88.28% 92.62% 66.58% 75.71% 96.49% 86.05% 88.33% 82.72% 78.31% 79.17% 67.99% 83.18%

SimMIM [19] 92.03% 93.66% 92.13% 69.16% 75.06% 96.21% 76.36% 89.80% 83.91% 72.46% 73.61% 68.24% 81.89%
Swin UNETR [15] 95.30% 94.29% 94.22% 74.01% 76.35% 96.71% 80.56% 90.42% 84.70% 75.12% 80.61% 67.25% 84.13%

ASA 96.89% 94.28% 94.10% 75.53% 76.66% 96.79% 82.42% 92.03% 86.02% 74.77% 80.98% 70.73% 85.10%
† Values are obtained from [8]The baseline performances were established by [8].
‡ Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto: stomach, Aor: aorta, IVC: inferior
vena cava, Veins: portal and splenic veins, Pan: pancreas, AG: left and right adrenal glands.

3 Experiments and Results

ASA: We independently pretrained ASA on the AMOS2022 [6] dataset for the
major evaluations (Table 1, Fig. 3, 4) and on the LUNA16 [13] dataset for the
ablation study (Table 2, 3). Both models follow the same pretraining protocol.
In phase 1, volumes are resized to 128 × 128 × 128, with the sub-volume size
16× 16× 16, leading to 512 unique sub-volumes and coordinates. The volume
in phase 2 is up-sampled to 160× 160× 160 before two spatially-related crops
sized 128 × 128 × 128 are obtained. The Swin UNETR [15, 3] architecture is
employed as both the student and teacher networks. Our model undergoes a
thorough comparison with both supervised and SSL baselines, revealing its su-
perior performance across various metrics related to multi-organ segmentation
task (Table 1), full finetuning, and linear probing evaluation on single organ seg-
mentation tasks (Fig. 3), as well as the label efficiency examination task (Fig. 4).
We conduct ablation studies to demonstrate effectiveness on 1D and 3D order
encoding predictions (Table 2) and to examine performance differences across
various ASA learning tasks (Table 3).
SimMIM and Swin UNETR: We pretrain the SimMIM [19] baseline on
AMOS2022 [6] dataset, adhering to the official implementation and implement-
ing the method in 3D on the Swin UNETR architecture with a 50% masking ra-
tio. Swin UNETR [15, 3] undergoes a pretraining phase involving three common
SSL tasks on five publicly accessible CT datasets. We obtained the pretrained
model from its official GitHub release. Pretraining and evaluation protocols are
detailed in Appendix A and B.
1) ASA outperforms state-of-the-art supervised and SSL methods on
multi-organ segmentation challenge on average.
Experimental Setup: To showcase the performance enhancements achieved through
ASA pretraining, we compare the ASA model with state-of-the-art supervised
and SSL models. For a fair comparison, we obtained the supervised baseline
performances and followed the train/valid/test split proposed by [8]. All models
are finetuned on the same setup and follow the same evaluation protocol.
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Fig. 3: Full finetuning and lin-
ear probing evaluation on single-
organ segmentation tasks.

Fig. 4: ASA surpasses the SoTA Swin UN-
ETR in label-efficient transfer learning on
AMOS2022, underscoring its robust features
learned from three advantageous tasks.

Result and Analysis: Showing in Table 1, ASA surpasses all reported methods on
13 organ segmentation tasks (with left and right adrenal glands combined) on the
BTCV validation set. Its superior performance over all five supervised learning
methods in segmenting 9/12 organs highlights ASA’s effectiveness in acquiring
generic appearance features for a variety of abdominal organs, despite being pre-
trained on only one abdominal dataset. Furthermore, ASA outperforms state-of-
the-art SSL pretraining methods, SimMIM and Swin UNETR, recognized in the
2D natural/medical imaging and 3D medical imaging domains, respectively [19,
15]. The substantial margin achieved by ASA over SimMIM underscores the ef-
ficacy of learning anatomical relationships. Additionally, ASA outperforms Swin
UNETR, which is pretrained via three proxy tasks to learn volume-level discrim-
inative and rotation-invariant features for the thoracic and abdominal regions
using five datasets. This suggests that more robust features can be learned by
capturing anatomical structure through sub-volume order prediction and by de-
picting fine-grained appearance features through volume appearance recovery.
2) ASA offers generalized representations for single-organ segmenta-
tion tasks under both fully finetuned and linear probing scenarios.
Experimental Setup: To assess ASA’s generalizability, we transfer the ASA model,
along with two SSL models, to pancreas and liver segmentation tasks. Follow-
ing the data split specified by [8], we evaluate the models on the Pancreas-CT
dataset (80 scans) and the LiTS dataset (130 scans) under both fine-tuning and
linear probing setups. For linear probing, we initialize the networks with the
pretrained model’s weights, freeze the encoder, and train only the decoder.
Result and Analysis: As depicted in Fig. 3, ASA surpasses both state-of-the-art
SSL methods under both fine-tuning and linear probing setups. As the liver is a
sizable organ in the abdominal region, all models demonstrate high performances
as measured by the dice score. ASA attains the highest score, underscoring its
superiority in delineating intricate edge details. In pancreas segmentation, ASA
outperforms SimMIM by a significant margin and surpasses Swin UNETR by a
more modest margin, highlighting the enhanced adaptability of features acquired
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Table 2: Target task
performance on 1D and
3D volume order predic-
tion.
Predicted BTCV TCIA Pan LiTSOrder

1D 82.48 82.02 73.29sequence

3D 83.16 82.79 73.52coordinates

Table 3: Study on different ASA tasks and strategies,
mean dice score for segmenting all organs is reported.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

@P1 Tsop x x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
@P1 Tgc x x x x ✓ x ✓ ✓ x x ✓
@P1 Tvar x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
@P2 Tlc ✓ x x x x x x x x ✓ ✓
@P2 Tgc ✓ ✓ x x x ✓ ✓ ✓ ✓ ✓ ✓
@P3 Tlc x x x x x x x ✓ ✓ x x

BTCV 82.12 82.38 82.52 83.16 82.79 84.01 83.97 84.05 84.03 83.86 84.42

Tsop represents sub-volume order prediction task only, Tvar represents volume
appearance recovery task only, Tgc represents global consistency task only, and
Tlc represents local consistency task only. @P1-3 represents the task performed
at which learning stage. All models are pretrained on LUNA16 only.

through our method, which effectively captures spatial relationships and fine-
grained features.
3) ASA exhibits better datalabel efficiency for multi-organ segmenta-
tion.
Experimental Setup: We finetune both ASA and Swin UNETR pretrained models
on subsets comprising 12 (5%), 24 (10%), 48 (20%), 120 (50%), and 240 (100%)
randomly selected samples from the official training split of AMOS2022 [6]. To
ensure fairness across diverse random samples, we conduct five independent ex-
periments and report their average performances. The mean Dice score for seg-
menting 15 organs is reported.
Result and Analysis: ASA demonstrates its superiority by surpassing Swin UN-
ETR, a state-of-the-art SSL method that employs three learning objectives on
3D medical segmentation task benchmarks [15]. This achievement highlights the
effectiveness of the ASA model in providing richer and more utilizable infor-
mation. As depicted in Fig. 4, ASA significantly outperforms Swin UNETR in
lower data regimes, with 12 (5%) and 24 (10%) training samples. While the per-
formance of both models is comparable with 48 (20%) training samples, ASA
continues to outperform Swin UNETR as the number of training samples in-
creases (50% and 100%). This underscores the effectiveness of ASA in extracting
fine-grained features and organ appearance information, even when pretrained
on fewer datasets.
4) Ablation Study: Comparison among different learning tasks. Exten-
sive ablation studies are conducted to compare different combinations of training
tasks and strategies, demonstrating the superiority of current ASA setup in the
BTCV task. Table 3 shows that models trained solely with crop consistency
tasks (S1, S2) or focused only on recovering volume appearance (S3) exhibit
the lowest performance. Adding sub-volume order prediction alongside appear-
ance recovery (S4) slightly enhances performance, underscoring the importance
of learning sub-volume relationships. Notably, adding Tgc (S5) causes the teacher
to collapse, resulting in poor performance. Integrating alternative training and
infusing global consistency in both stages (S6, S7) boosts performance. How-
ever, including local consistency and adding a third learning stage (S8, S9) do
not yield any discernible benefits. The current ASA setup (S11), which incorpo-
rates Tsop, Tvar, and Tgc in the first learning stage, and Tgc and Tlc in the second
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learning cycle, showcases the most prominent performance. There is a significant
performance drop when T gc is removed in the first stage (S10), highlighting the
importance of consistency between the original view embedding from the teacher
and the expected view embedding from the student network.
5) Ablation Study: 1D sub-volume sequences and 3D sub-volume co-
ordinates prediction.We evaluate the efficacy of using 1D sub-volume order
presentation (e.g., 1, 2, 3, ..., k) versus 3D sub-volume order presentation (e.g.,
(0,0,0), ..., (3,3,5), ..., (z,x,y)). All models presented in Table 2 are pretrained
on LUNA16 [13] using a combination of volume appearance recovery and sub-
volume order prediction tasks. The results show that predictions based on 3D
sub-volume order consistently outperform those based on 1D sub-volume order
in all downstream tasks, highlighting the importance of 3D sub-volume order
presentation for improved model performance.

4 Conclusion and Feature Work

We have developed a novel SSL method, ASA, which leverages the symmetry
and recurrent attributes inherent in medical images to acquire robust global rep-
resentation, intra-volume relationships, and detailed appearance features. ASA
employs a student-teacher network to alternately learn from diverse learning
perspectives. Extensive experiments have demonstrated the effectiveness and ef-
ficiency of ASA. Despite its excellent performance in segmenting CT images, the
training process for ASA is relatively intricate and relies on consistent and recur-
rent anatomical structures due to the proxy tasks involving positional encoding
predictions. Our future work will focus on simplifying the pretraining process,
removing the need for consistent anatomical patterns, and expanding ASA to
cover a broader range of tasks, including detection and registration. We hope
ASA inspires the development of enhanced SSL models with a deep understand-
ing of anatomical structures and their spatial relationships, thereby improving
diagnostic accuracy and facilitating advanced medical imaging applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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