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Abstract. This work proposes a novel framework for analyzing dis-
ease progression using time-aware neural ordinary differential equations
(NODE). We introduce a "time-aware head" in a framework trained
through self-supervised learning (SSL) to leverage temporal information
in latent space for data augmentation. This approach effectively inte-
grates NODEs with SSL, offering significant performance improvements
compared to traditional methods that lack explicit temporal integration.
We demonstrate the effectiveness of our strategy for diabetic retinopa-
thy progression prediction using the OPHDIAT database. Compared to
the baseline, all NODE architectures achieve statistically significant im-
provements in area under the ROC curve (AUC) and Kappa metrics,
highlighting the efficacy of pre-training with SSL-inspired approaches.
Additionally, our framework promotes stable training for NODEs, a com-
monly encountered challenge in time-aware modeling.

1 Introduction

Deep learning has embraced self-supervised learning (SSL) for representation
learning in downstream tasks. Existing SSL methods often rely on contrastive
learning [5] or hand-crafted pretext tasks [26]. The latter leverages inherent data
properties to automatically generate supervisory signals without manual anno-
tations. While effective, hand-crafted tasks require domain-specific knowledge.
Recently, longitudinal SSL approaches have emerged for disease progression anal-
ysis, aiming to capture disease evolution at patient or population levels [23, 19,
27, 6, 20, 17, 11]. Longitudinal self-supervised learning (LSSL) was initially intro-
duced in the context of disease progression as a pretext task [21] involving a
Siamese-like model. The model takes as input a consecutive pair of images and
predicts the difference in time between the two examinations. Since then, more
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In our proposed method, we add a time-aware module to the previous paradigm to inject disease
progression context into the pretraining process. Time plays the role of data augmentation here, achieved by either: 
Sampling latent representations that are very close, representing states where the disease remains the same (SimCLR-based).
Sampling latent representations of the next available visit (BYOL-based).

Fig. 1: a), c) refer to SimCLR [5] and BYOL [9], and e) refer to the standard paradigm
for predicting disease progression at a certain point in the future, using a single image.
b), d), and f) adapt the common SSL paradigm and supervised classification to disease
progression with the introduction of a time-aware head.

sophisticated LSSL algorithms have been proposed. The framework in [27] at-
tempted to theorize the notion of longitudinal pretext task with the purpose of
learning the disease progression. LSSL was embedded in an auto-encoder (AE),
taking two consecutive longitudinal scans as inputs. A cosine alignment term
was added to the classic reconstruction loss to force the topology of the latent
space to change in the direction of longitudinal changes. A Siamese-like architec-
ture was developed in [21, 12] to compare longitudinal imaging data with deep
learning. The strengths of this approach were to avoid any registration require-
ments, leverage population-level data to capture time-irreversible changes that
are shared across individuals and offer the ability to visualize individual-level
changes. The previously mentioned methods primarily focus on learning an ade-
quate feature extractor for disease progression analysis. While these approaches
offer valuable contributions, we claim that incorporating a time-aware compo-
nent during the learning process can lead to more accurate disease progression
models.

Neural ordinary differential equations (NODEs) [4] offer a promising ap-
proach for modeling time-dependent processes like disease progression. NODEs
define the relationship between input and output through the solution of an or-
dinary differential equation (ODE). Moreover, this allows to effectively handle
irregular time series data, a common feature in disease progression analysis [22].
However, current disease progression models often lack a dedicated time-aware
component. We propose to integrate a time-aware head based on a NODE ar-
chitecture between the encoding and classification stages. This approach aims to
condition the predictions with time, towards more accurate models [14, 24, 25].
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Recent works support the use of NODEs for disease progression. Studies have
employed NODEs to model COVID-19 progression [18] and predict Alzheimer’s
disease progression [14]. This work investigates the hypothesis that incorporating
a time-aware head based on NODE can outperform traditional classification
heads for disease progression tasks [1]. We claim that this approach can lead to a
more informative latent space representation, facilitating more advanced disease
progression analysis. To establish our proposed framework, we define and train
a set of similarity criteria specifically tailored to the learning paradigm. These
criteria, referred to as temporal evolution (TE), temporal consistency (TC), and
disease progression alignment (DPA), are critical to guide the learning process.

This paper presents the following key contributions:

1. We propose a novel framework for pre-training time-aware models to ad-
dress disease progression downstream tasks, specifically focusing on diabetic
retinopathy progression.

2. We explore the application of SSL to NODEs for disease progression analysis.
3. We bridge the gap between SSL and time-aware models by introducing novel

temporal augmentations.

To the best of our knowledge, this is the first attempt to leverage SSL to
learn improved weights specifically for NODE-based models in the context of
disease progression analysis using longitudinal medical images.

2 Methods

This section describes the methodology developed for disease progression anal-
ysis. We start by briefly describing two important frameworks commonly used
for pre-training. Our different hypotheses will be used on top of these frame-
works. To harmonize the notation, let f , g, u be encoder, projection head, and
time-aware head, respectively. The core novelty lies in employing NODEs within
the BYOL/SimCLR framework. With the proposition of two straightforward
augmentation schemes to pre-train a time-aware head using the most popular
SSL paradigms: SimCLR [5] and BYOL [9]. Let V be the set of consecutive
patient-specific image pairs from the collection of all CFP images. V contains
all (xti ,xti+1) that are from the same patient where xti is scanned before xti+1

and i ∈ [0,m − 2] with m the number of visits for a given eye. For a given pa-
tient, the scans are irregularly sampled due to clinical constraints (∆ti ̸= ∆ti+1

)
with ∆ti = ti+1 − ti the time difference between two consecutive exams and
we denote Sti the severity grade at time ti. Time-aware models are deep neural
networks that take as inputs both time and embedding representation. We note
h′
ti+1

= u(h(ti), ti, ti+1, θ) where u denotes a given deep neural network, and
θ its trainable parameters and hti some latent vector at time ti and h′

ti+1
the

latent representation produced by u at time ti+1. In our experiments, Neural
ODE (NODE) based methods will be followed.
Neural Ordinary Differential Equations (NODEs) approximate unknown
ordinary differential equations by a neural network [4] that parameterizes the
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Fig. 2: Proposed augmentation techniques that we employed to mimic the popular
SSL paradigms (SimCLR [5] on the left, BYOL [9] on the right) with neural ODE.

continuous dynamics of hidden units h ∈ Rn over time with t ∈ R. NODEs are
able to model the instantaneous rate of change of h with respect to t using a
neural network u with parameters θ.

lim
ϵ→0

ht+ϵ − ht

ϵ
=

dh

dt
= u(t, h, θ) (1)

The analytical solution of Eq.1 is given by:

hti+1 = hti +

∫ ti+1

ti

u(t, h, θ)dt = ODESolve(h(ti), u, ti, ti+1, θ) (2)

where [ti, ti+1] represents the time horizon for solving the ODE, u being a neural
network, and θ is the trainable parameters of u. By using a black-box ODE solver
introduced in [4], we can solve the initial value problem (IVP) and calculate the
hidden state at any desired time using Eq.2. We can differentiate the solutions
of the ODE solver with respect to the parameters θ, the initial state hti at initial
time ti, and the solution at time t. This can be achieved by using the adjoint
sensitivity method [4]. Through the latent representation of a given image, we
define an IVP that aims to solve the ODE from ti to a terminal time ti+1:

ḣ(t) = u(h(t), t, θ),with the initial value h(ti) = hti (3)

Following the same way, we can define a final value problem (FVP). This is
possible due to the fact that neural ODE are invertible and learn homeomorphic
transformation [4]. Through the latent representation of a given image, we define
a FVP that aims to solve the ODE from ti+1 to a reverse time ti:
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ḣ(t) = u(h(t),−t, θ),with the final value h(ti+1) = hti+1
(4)

2.1 SimCLR-based approach: disease progression alignment

During training, we sample pairs from V and encode the first element of the
pair yti = f(xti) using the encoder f . Then, using the projector g, we obtain
the representation of hti+1 = g(yti). To transpose the SimCLR (Fig.1.a) learn-
ing paradigm by defining close time in the patient disease trajectory such that
the transformation plays the role of augmentation for the time-aware model:
h′
∆ti

+δi
= ODESolve(h(ti), u, ti, ∆ti + δi, θ). The value of δi is chosen to align

with the known progression of the disease. For a given pair of image (xti ,xti+1
),

we first calculate the rate of variation such that ri =
Sti+1

−Sti

ti+1−ti
. By using ri, we

define an interval δi where the disease rate of progression is the smallest on a
period of one month, with ri · 12

365 . Using δi we now define δi+ and δi− two sub-
intermediate time, which will play the role of time augmentation for the neural
NODE when solving the ODE. We choose δi+ ∼ Unif(0, δi) (Unif denote the uni-
form distribution) and δi− = δi−δi+ so that the maximum time distance between
the two sampled times is at most δi. A schematic representation of the opera-
tions is illustrated in Fig.2 (left). We follow the standard SimCLR loss where τ
and sim stand for the temperature and the cosine similarity, respectively. We
can rewrite the objective loss for one pair in a batch:

h′
∆ti

+δi+
= ODESolve(h(ti), u, ti, ∆ti + δi+ , θ), (5)

h′
∆ti

−δi−
= ODESolve(h(ti), u, ti, ∆ti − δi− , θ), (6)

L = − log
exp(sim(h′i

∆ti
+δi+

, h′i
∆ti

+δi−
)/τ)∑2N

k=1 1[k ̸=i] exp(sim(h′i
∆ti

+δi+
, h′k

∆ti
+δi+

/τ)
(7)

2.2 BYOL-based approach: temporal evolution and temporal
consistency

Similar to BYOL, we leverage two neural networks, denoted to as online (pa-
rameterized by µ) and target (parameterized by ξ), that interact and guide each
other’s learning. The target network shares the same architecture as the on-
line network but uses exponentially moving average weights ξ ← αξ + (1− α)µ
with α controlling the moving average strength. During training, a pair of data
(xti ,xti+1) are sampled from the data distribution V. These are encoded by the
online and target networks’ shared encoder f into representations yti and yti+1 ,
respectively. Subsequently, projectors gµ and gξ project them into latent repre-
sentations hti and hti+1

. The online network leverages the initial latent code hti

to predict the future latent code h′
ti+1

using the IVP of the neural ODE (Eq.3).
Both predicted and target representations are L2-normalized. The BYOL loss



6 R. Zeghlache et al.

LBYOL NODE
µ is the mean squared error between the normalized prediction h′

ti+1

and hti+1
. A complementary symmetric loss L̃BYOL NODE

µ is formulated using the
FVP of the neural ODE, predicting h′

ti from hti+1
(Eq.4). Fig.2 (right) visually

depicts this process. The final loss function combines both BYOL losses:

L = LBYOL NODE
µ + L̃BYOL NODE

µ

3 Experiments and results

3.1 Dataset and implementation details.

We trained and evaluated our models on OPHDIAT [16], a vast dataset of fundus
photographs (CFPs) collected from the Ophthalmology Diabetes Telemedicine
network. This dataset encompasses examinations from over 101,000 patients be-
tween 2004 and 2017. Among the 763,848 interpreted CFP images, nearly 673,000
received diabetic retinopathy (DR) severity grade, while the remainder were
ungradable. The patient’s age ranges from 9 to 91 years. We trained the net-
works for 400 epochs using AdamW optimizer, OneCycleLR scheduler,learning
rate of 1e-3, weight decay of 1e-4, and a batch size of 128 on a single Nvidia
A6000 GPU with PyTorch. For NODEs, we utilized the Torchdiffeq library [3]
for solving ODEs, back-propagation, and the adjoint method. Our NODE ar-
chitecture comprised dense layers with tanh activation and dopri5 solver. We
monitored validation performance and saved the best model. We used ResNet50
[10] as a backbone and a two-layer MLP projector. By leveraging consecutive
image pairs, we achieved diversity without additional augmentations, fostering a
robust time-aware predictor for longitudinal tasks. We evaluated the effectiveness
of our framework in enhancing time-continuous models (TMCs) by comparing
our approach with popular TMCs like NODE [4], NODE-RNN [22], NODE-GRU
[2], and NODE-LSTM [15]. We evaluated our pre-trained model by fine-tuning
the time-aware and feature extractor component for 100 epochs on two tasks:
predicting DR progression at 1-3 years (task 1), and next visit timing (task 2).
The area under the receiver operating characteristic curve (AUC) with three
binary tasks: predicting at least non-proliferative diabetic retinopathy (NPDR),
(AUC1), at least moderate NPDR (AUC2) and finally at least severe NPDR
(AUC3) and the quadratic-weighted Kappa were used metrics. When δi is null a
default disease rate of progression equivalent of 3 month is given. Further train-
ing dataset details and hyper-parameters are given in supplementary materials.

3.2 Results

Evaluation of time aware model on a fixed time interval (Task 1):
Prediction of diabetic retinopathy progression for 1,2,3 years. Tab.1 compares
methods for predicting diabetic retinopathy (DR) progression at 1, 2, and 3 years
using AUC. A baseline model (ResNet50) achieved moderate performance (AUC
0.57-0.66). Adding a NODE layer generally decreased performance, and further
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incorporating recurrent layers (RNN, LSTM, GRU) yielded mixed results. How-
ever, pre-training the NODE layer with either disease progression alignment or
temporal consistency and evolution significantly improved performance (AUC >
0.6 for all predictions), with disease progression alignment achieving the highest
AUCs. These results suggest that pre-training the NODE layer with task-specific
information is crucial for accurate DR progression prediction.

Method Weights Prediction 1 year Prediction 2 year Prediction 3 year
AUC1 AUC2 AUC3 AUC1 AUC2 AUC3 AUC1 AUC2 AUC3

ResNet50 - 0.609 0.658 0.663 0.5747 0.620 0.624 0.603 0.649 0.636
ResNet50+NODE - 0.533 0.624 0.568 0.538 0.572 0.599 0.501 0.503 0.512
ResNet50+NODE-RNN - 0.498 0.465 0.549 0.606 0.655 0.653 0.499 0.467 0.505
ResNet50+NODE-LSTM - 0.524 0.619 0.564 0.504 0.459 0.575 0.542 0.616 0.615
ResNet50+NODE-GRU - 0.510 0.607 0.603 0.501 0.503 0.513 0.504 0.574 0.543
ResNet50+NODE SimCLR-based 0.645 0.694 0.674 0.606 0.651 0.664 0.615 0.679 0.678
ResNet50+NODE-RNN SimCLR-based 0.627 0.675 0.677 0.627 0.675 0.677 0.592 0.644 0.647
ResNet50+NODE-LSTM SimCLR-based 0.617 0.669 0.672 0.622 0.669 0.665 0.603 0.653 0.630
ResNet50+NODE-GRU SimCLR-based 0.615 0.669 0.679 0.614 0.663 0.667 0.581 0.634 0.657
ResNet50+NODE BYOL-based 0.654 0.708 0.669 0.654 0.708 0.669 0.640 0.685 0.673
ResNet50+NODE-RNN BYOL-based 0.650 0.696 0.680 0.650 0.696 0.680 0.608 0.659 0.661
ResNet50+NODE-LSTM BYOL-based 0.622 0.669 0.665 0.640 0.679 0.625 0.609 0.654 0.667
ResNet50+NODE-GRU BYOL-based 0.654 0.697 0.698 0.605 0.667 0.680 0.612 0.654 0.673

Table 1: Comparison of method and pre-trained weights in terms of AUC for the
prediction of diabetic retinopathy at 1, 2, and 3 years. Best results are in Bold.

Evaluation for DR progression of time aware model on varying time
interval (Task 2): Results shown in Tab.2 demonstrate the effectiveness of in-
corporating recurrent architectures (NODE-RNN, NODE-LSTM, NODE-GRU)
and inspired pre-training strategies (SimCLR, BYOL) for predicting diabetic
retinopathy progression. Compared to the baseline ResNet50+NODE model, all
recurrent architectures achieved statistically significant improvements (p < 0.05,
compared to the baseline without pretraining, DeLong test) in all three AUC
metrics (AUC1, AUC2, AUC3) and in Kappa across all pre-training settings.
Notably, BYOL pre-training consistently yielded the highest performance across
all NODE-recurrent models, with the NODE-GRU variant achieving the best
overall results (Kappa: 0.472, AUC1: 0.773, AUC2: 0.836, AUC3: 0.848).

The findings reported in Tab.1, 2 and 3 suggest that NODE-based recurrent
architectures effectively capture temporal information in retinal disease progres-
sion. Pre-training with self-supervised learning methods inspired by SimCLR or
BYOL further enhances model performance. One significant advantage of the
proposed paradigm lies in its ability to train models with modular time steps.
This flexibility contrasts with current methods, which often require imposing
strict criteria on datasets to fit a specific prediction task. Such constraints can
limit the model’s ability to handle variable durations and sample numbers within
the training data. While the tasks in our experiments share similar character-
istics, we observed a greater performance gain for the task presented in Tab.2
compared to Tab.1. We hypothesize that this difference stems from the varying
number of training samples between the two tasks. The results in Tab.2 showcase
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Method Weights Task 2
Kappa AUC1 AUC2 AUC3

ResNet50+NODE - 0.007 0.516 0.568 0.514
ResNet50+NODE-RNN - 0.042 0.561 0.623 0.628
ResNet50+NODE-LSTM - 0.127 0.571 0.618 0.643
ResNet50+NODE-GRU - 0.105 0.571 0.639 0.672
ResNet50+NODE SimCLR-based 0.090 0.560 0.631 0.680
ResNet50+NODE-RNN SimCLR-based 0.390 0.764 0.802 0.815
ResNet50+NODE-LSTM SimCLR-based 0.459 0.763 0.825 0.800
ResNet50+NODE-GRU SimCLR-based 0.472 0.769 0.836 0.820
ResNet50+NODE BYOL-based 0.177 0.589 0.646 0.714
ResNet50+NODE-RNN BYOL-based 0.421 0.760 0.831 0.847
ResNet50+NODE-LSTM BYOL-based 0.511 0.764 0.830 0.841
ResNet50+NODE-GRU BYOL-based 0.459 0.773 0.835 0.848

Table 2: Comparaison of method and pre-
trained weights in term of AUC for the
prediction of diabetic retinopathy for time
varying interval. Best results are in Bold.

Method TC Kappa AUC1 AUC2 AUC3
ResNet50+NODE (BYOL-based) No 0.096 0.572 0.633 0.641
ResNet50+NODE (BYOL-based) Yes 0.177 0.589 0.646 0.714

δi
ResNet50+NODE (SimCLR-based) 1 0.033 0.548 0.577 0.573
ResNet50+NODE (SimCLR-based) 2 0.049 0.546 0.607 0.628
ResNet50+NODE (SimCLR-based) 3 0.090 0.560 0.631 0.680

Table 3: Comparaison of the importance
of configuration for BYOL/SimCLR-based
pre-training technique on Task 2. Best re-
sults are in Bold.

the ability of our framework to fully leverage the strengths of continuous-time
models, allowing us to train models with samples featuring diverse progression
times (as depicted in Fig.1.c) compared to the limitations of classical paradigms.

3.3 Ablation study

Impact of value of the chosen δi and inverse constraint. To examine
the impact of temporal enhancement on model performance, we conducted an
ablation study focusing on the values of δi: (1) fixed: a constant value was as-
signed to δi for all data points; (2) variable (unaligned): δi was varied randomly
for each data point, but not aligned with the progression of the disease; (3)
variable (aligned): δi was varied based on the disease stage of each data point,
aligned with the temporal dynamics of the disease as explained in Sec.2.2. Tab.3
highlights the crucial role of both the inverse constraint in the BYOL-inspired
approach, and the alignment with disease progression and diverse values of δi in
the SimCLR-inspired training strategy.
Convergence challenges and benefits of pre-training. During experiments,
when training our time-aware classifier using the "dopri5" solver, we encountered
convergence issues, specifically when NODE was not pre-trained. These issues
manifested as unstable learning curves and gradient instability during training.
Notably, pre-trained models exhibited significantly faster convergence and con-
sistently stable gradients throughout the training process. This finding suggests
that pre-training can effectively mitigate a prominent challenge associated with
NODE training stability [7], aligning with previous observations reported in [25,
24, 8] about NODE pre-training and embedding capacities [13].

4 Conclusion

This study pre-trained NODEs, a time-aware model, to enhance representation
learning for longitudinal medical image analysis, significantly improving perfor-
mance in predicting DR progression. Our novel time augmentation paradigm
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bridges the gap between time-aware methods and popular SSL approaches like
BYOL/SimCLR, with potential generalizability to other techniques. This paves
the way for further exploration of re-training TAM, especially NODEs, for im-
proved temporal modeling in medical imaging. Future research should optimize
hyperparameters and extend our framework beyond classification to various lon-
gitudinal tasks.
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