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Abstract. Asymptomatic neurocognitive impairment (ANI) is a pre-
dominant form of cognitive impairment among individuals infected with
human immunodeficiency virus (HIV). The current diagnostic criteria
for ANI primarily rely on subjective clinical assessments, possibly lead-
ing to different interpretations among clinicians. Some recent studies
leverage structural or functional MRI containing objective biomarkers
for ANI analysis, offering clinicians companion diagnostic tools. How-
ever, they mainly utilize a single imaging modality, neglecting comple-
mentary information provided by structural and functional MRI. To this
end, we propose an attention-enhanced structural and functional MRI
fusion (ASFF) framework for HIV-associated ANI analysis. Specifically,
the ASFF first extracts data-driven and human-engineered features from
structural MRI, and also captures functional MRI features via a graph
isomorphism network and Transformer. A mutual cross-attention fusion
module is then designed to model the underlying relationship between
structural and functional MRI. Additionally, a semantic inter-modality
constraint is introduced to encourage consistency of multimodal features,
facilitating effective feature fusion. Experimental results on 137 subjects
from an HIV-associated ANI dataset with T1-weighted MRI and resting-
state functional MRI show the effectiveness of our ASFF in ANI identifi-
cation. Furthermore, our method can identify both modality-shared and
modality-specific brain regions, which may advance our understanding
of the structural and functional pathology underlying ANI.

Keywords: Multimodal fusion · HIV-associated asymptomatic neurocog-
nitive impairment · Structural MRI · Functional MRI.

1 Introduction

Asymptomatic neurocognitive impairment (ANI) is a mild form of neurocog-
nitive disorder observed in individuals infected with human immunodeficiency
virus (HIV) [1]. While ANI patients may not show noticeable symptoms, they are
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Fig. 1. Illustration of attention-enhanced structural and functional MRI fusion (ASFF)
framework. It first extracts structural and functional MRI features, and then utilizes
a novel mutual cross-attention fusion module for cross-modality relationship modeling
and multimodal feature fusion. A semantic inter-modality constraint is also introduced
to encourage consistency of multimodal features to facilitate effective feature fusion.

at risk of progressing to more severe forms of neurocognitive disorders without
appropriate treatment. Therefore, early diagnosis of ANI is critical for clinicians
to timely make treatment plans that can help prevent further cognitive decline.
Current diagnostic criteria for ANI primarily rely on clinical assessments (e.g.,
Frascati criteria [2]) by using a set of neurocognitive tests to evaluate an indi-
vidual’s cognitive functioning. But these assessment approaches exhibit a degree
of subjectivity, leading to varying interpretations among clinicians [3].

To provide clinicians with objective companion diagnostic tools, some recent
studies [1, 4, 5] explore the use of imaging data for ANI analysis. For instance,
Kato et al. [4] employ T1-weighted structural MRI (T1-w sMRI) to examine ANI
patients and healthy controls (HCs), and find that gray matter volume changes
can serve as a clinical biomarker for ANI identification. Han et al. [1] use resting-
state functional MRI (fMRI) to evaluate altered brain functional patterns of
ANI patients, and show that brain regions in visual network exhibit a significant
decrease in terms of regional homogeneity. However, these studies mainly rely
on a single imaging modality (either sMRI or fMRI) for ANI analysis, neglecting
complementary information offered by different modalities. Given that sMRI can
provide brain anatomy and fMRI can offer brain neural activation patterns, their
integration is expected to enhance the diagnostic accuracy for ANI and advance
our understanding of structural and functional pathology underlying ANI.

To this end, we propose an attention-enhanced structural and functional MRI
fusion (ASFF) framework for HIV-associated ANI analysis. Specifically, we first
extract feature representations from sMRI and fMRI based on learning-based
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methods and prior domain knowledge. We then design a mutual cross-attention
fusion module for cross-modality relationship modeling and multimodal feature
fusion. We also introduce a semantic inter-modality constraint to encourage con-
sistency of multimodal features to facilitate effective feature fusion for final pre-
diction. Experiments on an HIV-associated ANI cohort containing 137 subjects
with paired sMRI and fMRI scans suggest the effectiveness of ASFF. Addition-
ally, our method can identify modality-shared and modality-specific brain regions
that may serve as imaging biomarkers for ANI analysis. To our knowledge, this is
among the first attempts to investigate multimodal MRI fusion for ANI analysis.

2 Methodology

2.1 Multimodal Feature Extraction

Structural MRI Feature Extraction. Many studies [6, 7] use deep learning
methods to automatically extract sMRI features. These approaches often inte-
grate feature extraction and downstream tasks into a unified model, outputting
effective task-oriented data-driven features. Other research works [8,9] use prior
domain knowledge to design handcrafted sMRI features such as cortical thickness
and gray matter volume. These features are usually interpretable and could help
clinicians identify potential disease-related anatomical biomarkers. In this work,
we extract both data-driven and handcrafted sMRI features for ANI analysis.

As shown in Fig. 1, to extract data-driven features, we input T1-w sMRI into
a 3D convolutional neural network that comprises 4 blocks, each containing 3D
convolution operations with a kernel size of 5× 5× 5, leaky rectified linear unit,
max pooling, and batch normalization. The derived features are then vectorized
and fed into 3 multilayer perceptron (MLP) layers for feature abstraction, result-
ing in a new feature vector SD ∈ RM (M=64). The choices of network architecture
and hyperparameters are based on empirical experience. To extract handcrafted
features, we follow the processing stream provided by FreeSurfer [10], resulting
in 4,858 features for each sMRI scan (e.g., surface area, gray matter volume,
cortical thickness, curvature, and cortical gyrification). These features are then
fed into an MLP to produce SH ∈ RM . We then feed data-driven and handcrafted
features [SD, SH ] into an MLP, resulting in an sMRI feature vector S∈ RM .

Functional MRI Feature Extraction. Extracting fMRI features for studying
ANI is important, which allows clinicians to characterize brain activity changes
and find potential therapeutic targets. In this work, we explore fMRI features
from both spatial and temporal aspects, since brain regions are interconnected
spatially and also exhibit functional changes over time.

Specifically, we first parcellate the brain into N regions-of-interest (ROIs)
based on the AAL atlas and use the sliding window technique to partition fMRI
time series into T segments to model brain functional variability. We then rep-
resent fMRI data at each window as a graph, where each node denotes a brain
ROI and each edge denotes Pearson’s correlation between paired ROIs [11]. To
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capture spatial fMRI features across the entire brain, we employ an established
graph isomorphism network (GIN) [12] to update the representation of each ROI
by aggregating features from its neighbors. We also embed squeeze-excitation
(SE) [13] in each ROI to identify their unique contribution to the downstream
task. By averaging the representations of all ROIs, we obtain spatial fMRI fea-
ture f t (t=1, · · · , T ) for the t-th sliding window. With these spatial features, we
then learn temporal fMRI features across different windows to examine dynamic
changes in brain activity. To achieve that, we employ a Transformer [14] to model
attention across windows, resulting in a spatiotemporal fMRI feature F∈ RM .
The rationale behind this lies in the Transformer’s ability to capture long-range
dependencies in sequential data. Here, given that neural activity captured by
fMRI evolves over time, Transformer excels at capturing the dependencies across
multiple windows by processing the entire fMRI sequence simultaneously.

2.2 Mutual Cross-Attention Fusion

Given that sMRI and fMRI provide complementary information, their integra-
tion is expected to improve diagnostic performance. Recent studies suggest that
alterations in brain structure may influence functional changes [15], and vice
versa [16]. Intuitively, modeling mutual relationship between sMRI and fMRI is
useful to advance our understanding of brain neuroplasticity underlying ANI. Ac-
cordingly, we design a mutual cross-attention fusion module to capture intrinsic
relationships between sMRI and fMRI, followed by feature fusion for prediction.

To capture mutual cross-attention, we generate three new vectors based on
the sMRI feature S: query QS, key KS, and value VS (QS=KS=VS=S). We then
derive Q̃S, K̃S, and ṼS using learnable weight matrices WQS , WKS , and WVS :

Q̃S = QS ⊗WQS , K̃S = KS ⊗WKS , ṼS = VS ⊗WVS , (1)

where ⊗ represents dot product, Q̃S serves as structural context to the fMRI
modality, K̃S represents sMRI features intended for matching with fMRI, and
ṼS corresponds to structural representations used for computing attended sMRI
features. Similarly, we derive Q̃F , K̃F , and ṼF based on the fMRI feature F . To
model relationships between sMRI and fMRI, we capture their mutual relevance
and result in two attended sMRI and fMRI features as follows:

SA = softmax(Q̃F ⊗ K̃S/
√
M)⊗ ṼS , (2)

FA = softmax(Q̃S ⊗ K̃F /
√
M)⊗ ṼF , (3)

where Q̃F ⊗K̃S in SA captures the relevance between fMRI-related query Q̃F and
sMRI-related key K̃S, which is then scaled by feature dimension M for computa-
tion stability and fed into a softmax function to produce an attention score. By
multiplying this attention score with ṼS, we can highlight sMRI features that are
more relevant to fMRI. Similarly, FA emphasizes fMRI features that are more
relevant to sMRI. After obtaining SA and FA, we concatenate them and feed
them into an MLP for final prediction.
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2.3 Semantic Inter-Modality Constraint

To further model underlying dependencies of sMRI and fMRI, we design a se-
mantic inter-modality constraint LS to encourage consistency of SA and FA:

LS = −
∑B

i=1
gi · log(SA ⊗ FA) + gi · log(FA ⊗ SA), (4)

where B denotes the number of subjects in one training batch, and SA⊗FA ∈ RB×B is a
matrix with its (m,n)-th entry measuring the similarity between sMRI of m-th subject
and fMRI of n-th subject. Each diagonal value of SA⊗FA measures feature consistency
of the same subject while the off-diagonal elements evaluate consistency across different
subjects. The term gi∈ RB is a one-hot label vector corresponding to i-th subject, where
its i-th entry is set to 1 while all other entries are 0. By optimizing gi · log(SA ⊗ FA),
we aim to focus on diagonal values of SA ⊗ FA. In this way, we explicitly encourage
multimodal semantic features (i.e., SA and FA) of the same subject to be close, and
implicitly place those of distinct subjects further apart. The second term of Eq. (4)
follows the same principle, where (m,n)-th entry of FA ⊗ SA evaluates the semantic
similarity between fMRI of m-th subject and sMRI of n-th subject. And optimizing
gi · log(FA ⊗ SA) also enforces multimodal feature consistency of the same subject.

Objective Function. Besides LS , we introduce two additional losses for model
training, i.e., a classification loss LC and a modality-specific loss LM . As illustrated in
Fig. 1, LC is designed based on concatenated features [SA,FA], formulated as:

LC = −
∑B

i=1
yilog(pi) + (1− yi)log(1− pi), (5)

where pi indicates the probability derived from the concatenated features of i-th subject
followed by an MLP; yi ∈ {1, 0} is the ground-truth label (e.g., 1 for ANI, 0 for HC).
Considering that each single modality can also provide useful information, we use sMRI
and fMRI features to produce prediction separately, with the loss LM defined as:

LM = −
∑B

i=1
(yilog(pSi)+(1−yi)log(1−pSi))−

∑B

i=1
(yilog(pFi)+(1−yi)log(1−pFi)),

(6)
where pSi and pFi denote the probabilities derived from sMRI and fMRI features (i.e.,
S and F ) of the i-th subject, respectively. The final objective function is formulated
as: L=LC+LS+LM . Our ASFF is trained end-to-end via PyTorch. The Adam is used
for model optimization, and batch size is 4. The initial learning rate is set to 0.0001
and dropped by 0.5 every 50 epochs, and the training epoch is empirically set as 150.

3 Experiment and Discussion

Materials and Image Preprocessing. A dataset from a local hospital (named
ANID) is used in the experiments. It contains 68 HIV-associated ANI patients and
69 HCs, each with paired T1-w sMRI and resting-state fMRI scans. The demograph-
ics of the studied subjects are given in Supplementary Materials. All sMRI data are
preprocessed using a standard pipeline with FreeSurfer [10], including bias field cor-
rection, motion correction, intensity normalization, registration to Montreal Neurolog-
ical Institute (MNI) space, and skull stripping. All fMRI data are preprocessed using
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Table 1. Results (%) of ASFF and nine competing methods on ANID dataset.
Method AUC ACC F1 SEN SPE PRE

SVM [18] 55.65±3.96 54.76±5.43 54.92±5.49 55.24±6.46 54.29±7.13 54.8±5.32
RF [19] 53.99±10.16 53.33±9.11 46.49±12.61 42.86±17.56 63.81±13.67 54.56±10.21
ResNet [20] 56.80±9.65 55.71±7.16 52.85±6.75 49.52±6.46 61.90±11.66 57.17±8.76
GCN [21] 63.53±8.88 57.70±8.24 58.07±6.54 60.85±15.91 57.59±17.07 59.31±13.04
GAT [22] 65.80±13.10 57.70±13.33 59.81±9.22 63.77±15.52 56.46±28.89 61.65±19.88
TFM [14] 56.35±7.88 55.24±7.74 58.03±11.74 64.76±18.22 45.71±9.81 53.49±7.34
LSTM [23] 54.51±3.70 52.38±2.13 44.88±12.20 44.76±28.03 60.00±28.03 53.67±4.12
PAD [24] 64.08±4.68 60.00±4.10 59.63±3.78 59.05±3.81 60.95±5.55 60.30±4.29
CMCA [25] 67.14±4.91 60.50±4.00 58.70±2.24 53.33±3.56 68.42±11.04 66.22±7.53
ASFF (Ours) 68.66±5.73 65.24±4.90 63.98±4.85 61.91±6.73 68.57±9.33 66.86±6.25

DPARSF [17], with the following steps: discarding the first 10 volumes, slice timing
correction, head motion correction, bandpass filtering (0.01-0.10Hz), nuisance signal
removal, spatial normalization to MNI space, and brain partition into N = 116 ROIs
based on AAL atlas. The regional mean fMRI time series are extracted for each subject.

Competing Methods. We compare the proposed ASFF with nine competing ap-
proaches using the ANID dataset for ANI vs. HC classification, including 1) SVM [18]
and 2) RF [19] that feed 4,858 handcrafted sMRI features into an SVM and ran-
dom forest model, respectively; 3) ResNet [20] that inputs sMRIs to a 3D ResNet;
4) GCN [21] and 5) GAT [22] that capture fMRI features using a graph convolu-
tional network and graph attention network, respectively; 6) TFM [14] that utilizes
a Transformer to model fMRI dynamics; 7) LSTM [23] that captures long-term de-
pendencies for fMRI timeseries; 8) PAD [24] that uses XGBoost as the classifier with
concatenated handcrafted sMRI and fMRI features as input; and 9) CMCA [25] that
employs a graph neural network with sMRI and fMRI features as node features. For
all methods, we randomly split the dataset into training and test sets with a ratio of
70/30. This process is repeated five times, and the averaged results are recorded. Six
metrics are used for evaluation, including area under the ROC curve (AUC), accuracy
(ACC), F1-score (F1), sensitivity (SEN), specificity (SPE), and precision (PRE).

Classification Results. The mean and standard deviation results of ten different
methods for ANI diagnosis are reported in Table 1. From Table 1, we can see that the
methods using both sMRI and fMRI (i.e., PAD, CMCA, and ASFF) outperform the
methods that use one single modality in most cases. This implies that multimodal fusion
can enhance diagnostic accuracy by leveraging complementary information from differ-
ent modalities. Moreover, our ASFF shows superior prediction results compared with
the other two multimodal approaches (i.e., PAD and CMCA). For instance, the ASFF
achieves improved AUC scores of 4.58% and 1.52% compared to PAD and CMCA,
respectively. The possible reason may be that the ASFF can capture the inherent re-
lationships across the two modalities, while the PAD and CMCA only concatenate
multimodal features without considering intrinsic relevance between sMRI and fMRI,
thus leading to suboptimal performance.

Ablation Study. We compare the ASFF with its three variants: 1) ASFFw/oA that
removes the mutual cross-attention fusion module, i.e., sMRI features S and fMRI fea-
tures F are directly concatenated for prediction; 2) ASFFw/oS and 3) ASFFw/oM
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Table 2. Results (%) of the ASFF and its three variants on ANID dataset.
Method AUC (%) ACC (%) F1 (%) SEN (%) SPE (%) PRE (%)

ASFFw/oA 62.95±9.09 60.48±6.67 56.64±6.37 51.43±5.55 69.52±10.69 63.57±9.38
ASFFw/oS 64.04±6.30 60.95±6.32 58.79±3.31 55.24±4.86 66.67±16.22 64.72±11.15
ASFFw/oM 61.95±6.26 59.05±3.50 55.08±3.89 50.48±6.46 67.62±9.23 61.50±5.32
ASFF (Ours) 68.66±5.73 65.24±4.90 63.98±4.85 61.91±6.73 68.57±9.33 66.86±6.25
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Fig. 2. Illustration of ANI-associated brain regions derived from sMRI (a, c, e) and
fMRI (b, d, f) in three views. CC: corpus callosum; WM: white matter; CP: cerebellar
peduncle. The full names of brain regions are listed in Supplementary Materials.

that train ASFF without considering the semantic inter-modality constraint LS and
the modality-specific loss LM , respectively. The results of ASFF and its variants are
listed in Table 2. From Table 2, we can see that ASFF outperforms ASFFw/oA in most
cases, implying that capturing the underlying relationships between sMRI and fMRI
is beneficial to final prediction. The possible reason may be that brain structure and
function can influence each other in a bidirectional way, and there may exist inherent
relationships between sMRI and fMRI modalities. Thus, the mutual cross-attention pro-
posed in our ASFF could model such relationships by enforcing feature relevance across
both modalities, leading to improved diagnostic performance. In addition, we find that
ASFF generally shows superior results to ASFFw/oS and ASFFw/oM, which indicates
the importance of introducing LS and LM in ANI identification. The LS encourages
consistent features across sMRI and fMRI, while LM helps add modality-specific infor-
mation to ASFF. By using these two losses, it is expected that both modality-shared
and modality-specific features can be captured, as proven in the following subsection.

Discriminative Brain Regions. In Fig. 2, we visualize the discriminative brain
regions identified by our method from sMRI and fMRI. Specifically, for sMRI, we gen-
erate attention maps related to ANI identification using GradCAM [26] based on all
ANI patients correctly classified by our ASFF, as shown in Fig. 2 (a, c, e). For fMRI,
we employ squeeze-excitation [13] to identify the contributions of each brain ROI to
final diagnosis, and the top 10% informative ROIs are shown in Fig. 2 (b, d, f). By com-
paring the discriminative brain regions across sMRI and fMRI, we find the following
modality-shared regions, i.e., prefrontal cortex, cingulate, thalamus, and cerebellar
vermis, which are outlined by red circles and arrows in the figure. Specifically, the
prefrontal cortex is highly involved in many higher-order cognitive functions, such as
working memory and decision making [27], and its abnormality could cause neurocog-
nitive impairment in ANI patients [28]. The cingulate has also been shown related to
cognitive process [29]. And ANI patients may exhibit disrupted neural circuits involving
this region, leading to structural and functional aberration [30]. In terms of thalamus,
some existing studies report that this region shows reduced volume [31] and decreased
functional connectivity within thalamic prefrontal circuit [30] in HIV-positive patients.
These aberrant changes may play a significant role in cognitive dysfunction in ANI. In
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addition, the cerebellar vermis plays an important part in spinocerebellar pathway [32].
Even ANI patients are in the early stage of cognitive impairment without obvious clin-
ical symptoms, we still find anatomical and functional changes in this region, which
can serve as a potential indicator for assessing disease-related progression.

Moreover, our ASFF identifies some modality-specific brain regions contributing
to diagnosis. (1) From structural MRI, we find that white matter (WM) exhibits severe
abnormality in ANI patients, consistent with many studies [33,34]. The pattern of white
matter changes may reflect regionally specific HIV neuropathological process [35]. We
also find corpus callosum (CC) and cerebellar peduncle (CP) play important roles in
ANI diagnosis, which are in line with [36]. The underlying reason may be that both
CC and CP are close to cerebrospinal fluid (CSF) and choroid plexus, while HIV-
infected patients may have CSF viral escape and the choroid plexus has been shown
to be rich in HIV virus particles [37]. (2) From functional MRI, we find that insula [1],
olfactory [38], lingual gyrus [4], and superior temporal gyrus [5] are associated with
ANI. These findings indicate that the altered functional connectivities of these regions
contribute to cognitive dysfunction in ANI patients, which could be used as potential
fMRI biomarkers to improve ANI diagnosis in clinical practice.

Influence of Imaging Modalities. To investigate the influence of each modality
on ANI diagnosis, we compare the proposed ASFF with its three variants: 1) ASFF-D
and 2) ASFF-H that use data-driven and handcrafted sMRI features for prediction,
respectively, where their model architectures are the same as that used in ASFF; and
3) ASFF-F that employs the same GIN and Transformer as ASFF to extract fMRI
features for end-to-end prediction, without using structural MRI. The results of these
three variants and ASFF are reported in Fig. 3. From Fig. 3, we can see that our ASFF
that integrates both modalities outperforms the other methods that use only one single
modality, suggesting the necessity of sMRI and fMRI fusion. Moreover, an interesting
observation is that ASFF-F generally yields superior results compared to ASFF-D and
ASFF-H. This implies that functional MRI may help identify early brain alterations
and abnormalities in ANI before they are detectable from structural MRI.

4 Conclusion and Future Work

This paper designs an attention-enhanced structural and functional MRI fusion (ASFF)
framework for HIV-associated ANI diagnosis. The ASFF captures informative features
from structural and functional MRI, and then introduces a mutual cross-attention fu-
sion module to model the underlying relationship between two modalities. A semantic
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inter-modality constraint is also proposed to further facilitate multimodal feature fu-
sion. The experiments show the effectiveness of our method. In addition, our method
helps identify both modality-shared and modality-specific brain regions underlying
ANI, which could be employed as potential imaging biomarkers for early diagnosis.

In the current study, we only have a limited number of studied subjects. In future
work, we are planning to collect more data and also generalize a foundation model pre-
trained on large-scale public datasets to our ASFF for improved diagnosis. Additionally,
we only utilize two modalities (i.e., T1-weighted sMRI and resting-state fMRI) in this
work. It is interesting to incorporate other modalities such as diffusion MRI to boost
multi-modality data fusion and automated detection of ANI.
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