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Abstract. Large language models (LLMs) have demonstrated potential
across various tasks, including vision-language applications like chest X-
ray (XR) report generation (RG) in healthcare. Recent RG approaches
focus on optimizing model performance for a single dataset with a single
XR modality, often neglecting the critical area of computed tomogra-
phy (CT) report generation. The challenge is compounded by medical
datasets being isolated across different centers, making comprehensive
collection difficult. Furthermore, LLMs trained on datasets sequentially
can experience catastrophic forgetting. In this paper, we move beyond
conventional approaches of training on a single dataset, and focus on
improving the overall performance on sequentially collected multi-center
datasets. We incorporate four datasets with diverse languages and image
modalities for the experiments. Our approach utilizes a minimal number
of task-specific learnable weights within an LLM-based RG method for
each domain, maintaining the majority of weights frozen to avoid forget-
ting. Utilizing LLMs’ multilingual generalizability, we align models and
facilitate knowledge sharing through a multi-label supervised contrastive
loss within the LLM hidden space. We design a 2D-3D adapter for the
image encoder to transfer from XR to CT RG tasks. A CT disease graph
is established for transferring knowledge from XR to CT RG tasks, using
CT’s most relevant XR disease class centers in a triplet loss. Extensive
experiments validate our design.

Keywords: Continual learning · Large language model · Multi-domain
· Multi-modality · Parameter efficient fine-tuning · Report generation.

1 Intorduction

Integrating various modalities and tasks into a unified system offers a promising
avenue toward achieving medical artificial general intelligence. Large language
models (LLMs) trained on extensive textual datasets have shown impressive re-
sults [3,5,8,31,32,38]. Recent advancements have extended LLM applications to
vision-language tasks [4,16], including chest X-ray (XR) report generation (RG),
enhancing clinical efficiency and reducing radiologists’ workload [23,30,36,37].



2 Y. Sun et al.

However, current practices in the medical field primarily involve fine-tuning
LLMs for specific applications [23,30,36,37]. Medical data is isolated in different
centers, presenting challenges in accessing them at large scale all at once. This
isolation prevents access to comprehensive datasets, challenging the tuning of a
unified LLM for RG. On the other hand, the sequential gathering of multi-center
data poses a risk of catastrophic forgetting for LLM once it learns a new task [20].
Moreover, current RG methods focus largely on XR [22], with a noticeable lack
of focus on the clinically significant 3D computed tomography (CT).

The advent of LLMs presents an opportunity to create a versatile model
for RG, tailored to the diverse needs of medical centers. Moving beyond con-
ventional approaches of training on a single dataset, there is a critical need for
RG models that can continually learn and be optimized for all domains with-
out forgetting. Yet, most existing continual learning strategies concentrate on
classification tasks [35], leaving the more challenging RG task unaddressed. Our
research aims to fill this gap by developing continual learning methods for multi-
domain radiology RG, targeting both technical innovation and clinical impact.

We propose a novel paradigm, namely Continually tuning for Multi-domain
Radiology Report Generation based on LLM (CMRG-LLM), aimed at op-
timizing the performance across sequentially acquired multi-center RG datasets
and transferring knowledge from XR to CT RG. The major challenges are: 1)
Addressing domain shift concerning both images and the linguistic style of re-
ports; 2) Facilitating efficient knowledge transfer across tasks, notably from XR
to CT RG; 3) Meeting clinical requirements that utilize varying numbers of input
images; 4) Preventing the forgetting of previous tasks.

We leverage the strong generalizability of LLMs, with a focus on multilingual
capabilities [10] to produce consistent embedding across languages. A limited
number of weights is learned for each domain to bridge disparities in visual and
linguistic contexts. Subsequently, we prompt a frozen LLM to produce desired
outputs for various domains and prevent forgetting. We utilize a multi-labeled su-
pervised contrastive loss to cluster features, fostering knowledge transfer across
tasks by leveraging previous disease class centroids within the latent space of
the LLM. Furthermore, alongside the existing XR disease graph [11], we create
a graph of common diseases in CT and link them to their most relevant XR dis-
eases. For transitioning from XR to CT, we utilize a lightweight 2D-3D adapter
to manage dimensional expansion and transfer knowledge using the class center
of CT’s most relevant disease on XR. Extensive experiments validate our design.

2 Methodology

2.1 Problem Formulation

A sequence of datasets {Dt}Tt=1, Dt = {(Xt
i , y

t
i)}

Nt
i=1, is collected from multi-

center clinical sources, encompassing diverse image modalities. In each domain
t, Xt

i = {xt
1, · · · , xt

ki
} represents a set of images, and yti is the corresponding

medical report. Given that a radiologist may capture one or multiple image(s)
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Fig. 1. We focus on sequentially collected multi-center, multi-modality datasets. (bot-
tom of the figure). Once trained on the initial dataset, CMRG-LLM acquires a minimal
set of parameters to adapt to new datasets and prevent forgetting. Disease features are
clustered in the LLM’s hidden space, facilitating knowledge transfer by aligning fea-
tures with the class center from previous datasets (right-hand side of the figure).

(e.g., both frontal and lateral chest XR) for a single report, the image count ki
in Xt

i can vary. Each Xt
i is associated with a multi-hot disease label ei.

For multi-domain RG experiments, we collect four datasets featuring diverse
report styles and image modalities as follows: 1) DXE1

: A large-scale public
dataset containing chest XR images paired with English reports. 2) DXE2 : A
smaller dataset contains chest XR images and English reports, which specifically
include paired frontal and lateral views. 3) DXC : A clinical dataset consists of
chest XR images and Chinese reports collected from real clinical settings, where
images may be singular or paired to generate a report. 4) DCTC : A clinical
dataset comprises 3D chest CT volumes and corresponding reports in Chinese.
Further details regarding these datasets are available in Section 3.1.

2.2 Prompt Construction

We start with a large public dataset and continually train a model to address
various clinical needs without forgetting. We conduct experiments with the order
DXE1

→DXE2
→DXC→DCTC , reflecting the practice of model development from

online to clinical datasets and from simpler XR tasks to more intricate CT tasks.
Large Language Model. It is observed that multilingual LLMs can produce
consistent latent embedding across languages [10]. In light of this, we utilize a
multilingual LLM as the backbone (Fig. 1). The parameters Ω in the LLM are
frozen, to ensure efficient tuning while maintaining pre-trained generalizability.
An instruction prompts the LLM to activate its knowledge for RG, depicted in
Fig. 1 and supplementary material. A tokenizer embeds the instruction into fp.
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Learnable Prompts. A proficient continual RG learner can adeptly manage the
domain gap in report stylistics/language and image representation. The overall
framework is depicted in Fig. 1. We design a domain token f t, sized 1×C, shared
across all images within a domain to capture the style of reports, where C is
the channel dimension. Besides, a learnable query q is utilized to address image
discrepancies across domains by interacting with the features of Xt

i .
To obtain an image’s embedding sequence fk of length Lf , we employ a 2D

visual encoder E( · ; θ), where fk = E(xt
k; θ) and θ are the learnable parameters.

Inspired by [16] for bridging the visual-lingual gap, we adopt q (shaped Lq ×
C) as query and fk as key/value in a multi-head attention (MHA) [33] block
M( · ;µ) to aggregate visual information. The aggregated image embedding is:
fq
k = M(Q,K, V ;µ) = M(q, fk, fk;µ), where fq

k matches the shape of q with
Lq < Lf . This mechanism enables M to distill the most informative visual
features from fk for transformation into textual representations. The feature fq

k

is projected by a linear layer P ( · ;σ) to match the LLM’s hidden size.
Even multiple input images are present, we derive a single feature fi by aver-

aging their projected features: fi = 1
ki

∑ki

k=1 P (fq
k ;σ), using shared parameters

σ. This feature fi undergoes refinement through layer normalization (LN) [2],
employing parameters γ and β, to generate the visual prompt fv

i .
The final prompt for LLM is the concatenation of f t, fv

i , and fp. The training
goal is to maximize the output’s log probability in an auto-regressive manner [26]:

LLM (f t, θ, µ, q, σ, γ, β, α) = −
∑

(Xt
i ,y

t
i)∈Dt

log p(yti |[f t, fv
i , f

p], Ω∗, θ, µ, q, σ, γ, β, α), (1)

where “∗” indicates that the weights are frozen and α is optional for 2D-3D
adaptation that will be introduced in Section 2.3. For the the initial domain
DXE1 , we tune all parameters with loss LLM

XE1
= LLM (f t, θ, µ, q, σ, γ, β).

2.3 Tuning Strategy

For the initial training on DXE1 , following [37], we let |Xt
i | = 1 to input either

frontal or lateral view of chest XR, ensuring E could effectively process both
views. On DXE2

, |Xt
i | = 2, indicating inputs comprising both views. On DXC ,

|Xt
i | = 1 or 2, reflecting real clinical applications. On DCTC , |Xt

i | = 1.
Tunable Parameters. After being trained on DXE1 , E gains the capability to
derive valuable insights from XR images, facilitated by M linking these images
to LLM. To prevent knowledge loss, we freeze E and M and introduce unique
parameters for f t and q across different domains. This strategy helps in reducing
the disparities in report styles and image inputs observed across domains.

We tailor the optimal prompt for each domain through distinct parameters
for P and γ/β in LN. The narrower domain gap between the transition from
DXE1

to DXE2
, where both datasets are in English, allows us to maintain a fixed

P . The language modeling losses on DXE2
and DXC are: LLM

XE2
(f t, q, γ, β) =

LLM (f t, θ∗, µ∗, q, σ∗, γ, β), LLM
XC (f t, q, σ, γ, β) = LLM (f t, θ∗, µ∗, q, σ, γ, β).
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Forward Knowledge Alignment through LLM. We propose aligning mod-
els with disease labels during continual learning within the latent space of LLM,
facilitating forward knowledge transfer through class centers. Given an input set
[f t, fv

i , f
p], we denote its hidden features in the LLM as hi, with a length of Lh.

We calculate feature hp
i using a projection layer Ph: hp

i = Ph

(
1
Lh

∑Lh

l=1 hi(l, :)
)
.

Initially, lacking prior information, we group hp
i into NXR disease classes

using supervised contrastive loss [14]. Considering the possibility of multiple
disease labels per image, we adjust for a multi-label context as follows:

LSC =
∑
i

1

|S(hp
i )|

∑
hp

i+
∈S(hp

i )

log
exp

(
⟨hp

i , h
p
i+⟩/τ

)∑
a∈B\{i} exp (⟨h

p
i , h

p
a⟩/τ)

, (2)

where ⟨ · , · ⟩ is inner product, τ ∈ R+ is a scalar temperature parameter, B
is a set of batch indices. S(hp

i ) includes positive samples sharing at least one
label with hp

i . In this case, samples with multiple labels will be pulled to all the
positive groups, and helps to pull these groups closer. Given the higher intrinsic
correlations among co-existing diseases, LSC model these correlations by pulling
the classes closer using the multi-labeled samples (Fig. 1).

For DXE1
→DXE2

→DXC , we calculate and update feature centers hc
d for each

disease class, using only features associated with a single label. During training
on DXE2 , we group features by their labels and align them with corresponding
class centers from the previous dataset to promote knowledge transfer. We define
LSC
center similar to Eq. (2), but update S(hp

i ) to S′(hp
i ) = S(hp

i )∪{hc
d|ei(d) = 1},

where ei(d) = 1 indicates that the sample Xt
i have a label of d-th disease.

From XR to CT. Given a 3D CT with shape H×W×Z, it offers broader disease
detection capabilities compared to XR. Instead of developing a 3D encoder for
CT from scratch and discarding XR-derived insights, we propose a lightweight
2D-3D adapter, A( · ;α), with only two convolution layers. We reposition the lon-
gitudinal dimension Z to the channel dimension, compressing it into 3 channels
using 2D convolutions. It processes CT’s in-plane data via 2D convolution, merg-
ing it across planes to encapsulate 3D information as it condenses the channels.
The resulting 3×H ×W features are fed into the pre-trained frozen E (Fig. 1).
A is trained using LLM

CTC(f
t, q, σ, γ, β, α) = LLM (f t, θ∗, µ∗, q, σ, γ, β, α).

We align the common disease between CT and XR with the previous feature
centers on XR using LSC

center. For diseases unique to CT, features are drawn
towards the most relevant disease class center, hc

d(i), from XR (supplementary
material) and repelled from the “no findings” center, hc

0, using a triplet loss [29]:
LTP = max(⟨hc

d(i), h
p
i ⟩ − ⟨hc

0, h
p
i ⟩+ δ, 0), where δ is the margin parameter. This

enhances the transfer of disease correlation knowledge from XR to CT. For
diseases unique to CT that should not be strictly pulled to XR features, δ allows
the relaxation for the features to explore around, preventing strict alignment.
Losses. The final losses are as follows: 1) On DXE1 , L = LLM

XE1
+λc

1LSC ; 2) On
DXE2

, L = LLM
XE2

+λc
1LSC

center; 3) On DXC , L = LLM
XC +λc

1LSC
center; 4) On DCTC ,

L = LLM
CTC + λc

1LSC
center + λc

2LTP , where λc
1, λ

c
2 are hyper-parameters.
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Fig. 2. The t-SNE [21] visualizations of LLM hidden features. LLM shows potential
by distinguishing “no finding” and others with only LLM . We further shape the feature
space with LSC and disease class centers are utilized for knowledge transferring.

3 Experiments

3.1 Experimental Setup

Datasets. Four datasets are included in the study: 1) MIMIC-CXR (DXE1
): A

public dataset comprises chest XR images and English reports [9,12,13]. We col-
lect 238k images and follow the official split. 2) IU-Xray (DXE2

): A public dataset
includes paired frontal and lateral chest XR images and English reports [7]. We
collect 5.9k images and follow the 7:1:2 train/validation/test set split in [17]. 3)
DXC : A clinical dataset collected from Beijing Tsinghua Changgung Hospital
(BTCH), containing 5.7k chest XR images and Chinese reports, encompassing
both paired and singular frontal and lateral views. 4) DCTC : A clinical dataset
collected from BTCH, comprising 4.3k chest CT scans and Chinese reports.

We employ a random 7:1:2 split to partition DXC and DCTC into training,
validation, and test sets. For all datasets, we filter data containing both impres-
sion and findings sections, and predict both sections. The reports are labeled
based on CheXpert labeler [11,25].
Implementation Details and Evaluation Metrics. The XR images are
downsampled to 224×224, and the CT volumes are downsampled to 224×224×64
with a spacing of 1.5× 1.5× 5 mm3. We utilize Qwen [3] with 7B parameters as
the LLM backbone. Encoder E is a Swin Transformer [19] pre-trained on Ima-
geNet [28]. The Chinese reports are segmented by jieba [1]. More details are in the
supplementary material. We use BLEU-n [24], ROUGE [18] and CIDEr [34] for
evaluation. We quantify the overall performance using the average score across
current and previous tasks. We report score vt =

1
t

∑t
s=1 vs,t, where vs,t is the

metric v of a model trained on t-th task evaluated on the test set of s-th task.

3.2 Quantitative and Qualitative Evaluations

Visualizations of LLM Hidden Space. The t-SNE visualizations (Fig. 2)
demonstrate that without the contrastive loss LSC , there is overlap among clus-
ters corresponding to diseased classes. However, clusters associated with the
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Table 1. Comparison with SOTA continual learning methods. CMRG-LLM outper-
forms other methods. The scores of R2genGPT are quoted from their original paper.

Methods BLEU-3 BLEU-4 ROUGE CIDEr
t-th task t = 2 t = 3 t = 4 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4

R2GenGPT [37] 0.207 - - 0.154 - - 0.337 - - 0.354 - -
Per-task FT 0.209 0.355 0.353 0.152 0.308 0.307 0.358 0.495 0.480 0.343 1.533 1.334
SeqFT 0.167 0.220 0.127 0.117 0.209 0.107 0.324 0.279 0.190 0.295 1.307 0.186
Replay 0.220 0.355 0.364 0.164 0.309 0.318 0.362 0.492 0.485 0.440 1.543 1.360
EWC [15] 0.173 0.265 0.125 0.123 0.240 0.107 0.331 0.365 0.190 0.314 1.346 0.216
DER [6] 0.145 0.218 0.282 0.105 0.209 0.249 0.281 0.264 0.376 0.338 1.301 1.155
ProgPrompt [27] 0.210 0.359 0.358 0.153 0.312 0.313 0.354 0.491 0.475 0.353 1.531 1.305
CMRG-LLM 0.229 0.377 0.376 0.169 0.328 0.330 0.374 0.507 0.489 0.290 1.529 1.348

“no finding” class show some degree of separation due to the auto-regressive re-
port generation loss LLM . This observation suggests LLM’s capability to encode
disease-related knowledge. Incorporating the LSC loss, which pulls samples with
shared labels closer and pushes others apart, enhances the representation.

Diseases that frequently co-occur exhibit a stronger intrinsic correlation. The
LSC captures this correlation by pulling the feature clusters of frequent co-
occurring classes closer, using the multi-labeled samples, while pushing them
apart otherwise. As shown in Fig. 2, “cardiomegaly” is distinct from lung and
pleural diseases. Subsequently, we encourage forward knowledge transfer by
aligning the newly learned feature space with the previous class centers.
Quantitative Results. We compare our method to conventional methods: 1)
Per-task FT: Fine-tuning and caching an independent parameter for each task.
2) SeqFT: Sequentially fine-tuning all parameters across a sequence of tasks. 3)
Replay: Fine-tuning with a memory buffer and replay sample from old tasks.
We also compare state-of-the-art (SOTA) general continual learning methods
EWC [15], DER [6] and progressive prompt (ProgPrompt) [27]. ProgPrompt
sequentially concatenating new learnable prompts for each task to LLM. Note
that we consider all the parameters for tuning except the LLM is kept frozen.

As shown in Table 1, after being trained on the 4-th task (DCTC), the per-
formance of SeqFT dropped much lower. This result indicates that LLM for RG
tasks suffers from catastrophic forgetting, which hinders its expansion in real
clinical applications and emphasizes the necessity of our research. In Table 1,
our methods outperform SOTA methods, indicating effectiveness in learning
and transferring knowledge on sequential tasks. Per-task FT optimizes its per-
formance for a single dataset, discarding the knowledge in other datasets, thus
limiting its performance.

Since Per-task FT generates sub-optimal results, it is not true that the more
parameters tuned the better the performance can be. Ideally, parameters with
domain-specific knowledge should be updated, while those with domain-invariant
knowledge should remain unchanged to facilitate knowledge transfer and miti-
gate forgetting. We then evaluate if each parameter tuned is effective for overall
performance by freezing one of them. As shown in Table 2, each tuned param-
eter contributes to the final score. P is crucial for generating prompts for each
domain and triggering the desired outputs. The empirical results suggest that q
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Table 2. Experimental results of how each learnable parameters contribute to the final
score. Also, the effect of LSC and previous class center hc

d is evaluated.

q ft P LSC hc
d BLEU-3 BLEU-4 ROUGE CIDEr

t-th task t = 2 t = 3 t = 4 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4
✓ ✓ ✓ 0.228 0.364 0.358 0.168 0.315 0.311 0.374 0.495 0.472 0.302 1.442 1.191
✓ ✓ ✓ 0.227 0.370 0.370 0.167 0.321 0.324 0.373 0.505 0.488 0.290 1.497 1.318

✓ ✓ ✓ 0.229 0.374 0.373 0.168 0.325 0.326 0.373 0.506 0.490 0.296 1.501 1.305
✓ ✓ ✓ 0.216 0.361 0.359 0.155 0.311 0.313 0.361 0.495 0.477 0.263 1.455 1.268
✓ ✓ ✓ ✓ 0.228 0.375 0.373 0.168 0.326 0.326 0.374 0.507 0.490 0.302 1.521 1.317
✓ ✓ ✓ ✓ ✓ 0.229 0.377 0.376 0.169 0.328 0.330 0.374 0.507 0.489 0.290 1.529 1.348

Fig. 3. The outputs and corresponding translations (key information is in color). SeqFT
suffers from forgetting and cannot generalize well to CT RG (highlighted in yellow).
The precise location/size for CT RG is still difficult to generate (highlighted in green).

and f t capture domain-specific discrepancies in image and report style. Table 2
further demonstrates that the multi-label contrastive loss LSC and the previous
class center hc

d enhance knowledge transfer, resulting in improved outcomes.
Case Study. After the models have sequentially learned up to the 4-th task
DCTC , we evaluate their performance on DXE1

and DCTC , as shown in Fig. 3.
SeqFT incorrectly identifies the language style and erroneously generates CT
findings from an XR image, as highlighted in yellow. In contrast, our method
produces a more accurate CT report, showcasing enhanced capability in trans-
ferring knowledge from XR to CT and accurately detecting CT-specific findings
(e.g., parenchymal band, nodule).

4 Conclusion and Discussion

In this paper, we propose a novel paradigm for continual learning in RG using
LLM, moving beyond previous strategies that target a single dataset. We employ
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minimal task-specific learnable parameters to adjust to new domains, addressing
variations in image and report styles. We enhance knowledge transfer across
domains by incorporating disease class centers. Additionally, we present a CT
disease graph linked to the most relevant XR disease, facilitating effective cross-
modality transfer with a 2D-3D adapter. The limitation of this work is that long
reports and precise location/size of diseases are still very challenging to generate
(Fig. 3). This may be improved by incorporating human-LLM interactions with
manual textual or visual prompts. We hope our work can bring new insights to
the community in the era of large/foundation models.
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