
PEPSI: Pathology-Enhanced Pulse-Sequence-Invariant
Representations for Brain MRI

Peirong Liu1 Oula Puonti1 Annabel Sorby-Adams1
W. Taylor Kimberly1 Juan E. Iglesias1,2,3

1Harvard Medical School and Massachusetts General Hospital
2University College London 3Massachusetts Institute of Technology

Abstract. Remarkable progress has been made by data-driven machine-
learning methods in the analysis of MRI scans. However, most existing
MRI analysis approaches are crafted for specific MR pulse sequences
(MR contrasts) and usually require nearly isotropic acquisitions. This
limits their applicability to the diverse, real-world clinical data, where
scans commonly exhibit variations in appearances due to being obtained
with varying sequence parameters, resolutions, and orientations – espe-
cially in the presence of pathology. In this paper, we propose PEPSI,
the first pathology-enhanced, and pulse-sequence-invariant feature rep-
resentation learning model for brain MRI. PEPSI is trained entirely on
synthetic images with a novel pathology encoding strategy, and enables
co-training across datasets with diverse pathologies and missing modal-
ities. Despite variations in pathology appearances across different MR
pulse sequences or the quality of acquired images (e.g., resolution, orien-
tation, artifacts, etc), PEPSI produces a high-resolution image of reference
contrast (MP-RAGE) that captures anatomy, along with an image specif-
ically highlighting the pathology. Our experiments demonstrate PEPSI’s
remarkable capability for image synthesis compared with the state-of-
the-art, contrast-agnostic synthesis models, as it accurately reconstructs
anatomical structures while differentiating between pathology and nor-
mal tissue. We further illustrate the efficiency and effectiveness of PEPSI
features for downstream pathology segmentation on five public datasets
covering white matter hyperintensities and stroke lesions. Code is avail-
able at https://github.com/peirong26/PEPSI.

1 Introduction

Recent learning-based methods have enabled considerably more rapid and ac-
curate image analysis of brain magnetic resonance imaging (MRI) [15], which
provides precise and adjustable soft-tissue contrast via noninvasive, in vivo imag-
ing of the human brain [4]. Nevertheless, the majority of current MRI analysis
approaches are tailored to particular MR pulse sequences (MR contrasts), and
often rely on nearly isotropic acquisitions. Consequently, sharp declines in per-
formance frequently occur when voxel size and anisotropy increase, or when
applied to a contrast that is different from the one used during training [28].
This compromises model generalizability and leads to extra data collection and
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training efforts when dealing with new datasets. Leveraging synthetic data, re-
cent contrast-agnostic models [16,22,20,15,2,13,18] demonstrate remarkable per-
formance and largely broaden the scope of model applicability to the diverse
clinical acquisition protocols. However, these models are confined to the specific
tasks they were trained for and cannot be readily adapted to other tasks.

Meanwhile, task-agnostic foundation models [3,1] in general computer vision
and natural language processing have experienced notable success, driven by the
fast growth of large-scale datasets [5,8,17]. Nonetheless, the development of foun-
dation models in medical imaging has been hindered by the lack of large-scale
datasets (in many domains), variations in acquisition protocols and processing
pipelines, and privacy constraints. MONAI [7] provides pre-trained models for
diverse tasks, but they generally are highly task-oriented and contrast-sensitive.
Zhou et al. [30] proposed a medical foundation model, which is specifically de-
signed for the detection of eye and systemic health conditions from retinal scans,
yet this model is limited to the modalities of color fundus photography and op-
tical coherence tomography. AI generalist systems [24,26,27] have shown supe-
riority in biomedical tasks (e.g., visual question answering, image classification,
radiology report generation and summarizing), but mostly within the vision-
language context. CIFL [9] was designed for task-agnostic feature representa-
tions, yet it has only been demonstrated in 2D, and exclusively relies on con-
trastive learning, insufficient in surpassing task-specific models in downstream
applications [21]. Recently, Liu et al. [21] proposed Brain-ID, which extracts
contrast-agnostic features for brain MRI, and achieves state-of-the-art perfor-
mance in various fundamental medical imaging tasks including reconstruction,
segmentation, and super-resolution. However, Brain-ID exclusively focuses on
healthy-appearing anatomy and lacks the capacity to model pathologies (Fig. 4).

In this paper, we introduce PEPSI, the first pulse-sequence-invariant feature
representation learning approach specifically designed to emphasize pathology.
PEPSI is trained on synthetic data encoded with pathology, and can be directly
applied to real images featuring various types of pathology.

1) We introduce a data generator that synthesizes images incorporating aug-
mented pathologies across any combination of deformation, pulse sequence,
resolution, orientation, artifacts, etc., thus circumventing the limitations of
real data, which are often confined to the acquired pulse sequence (Fig. 1).

2) We design a feature learning framework guided by MP-RAGE and FLAIR
scans, which balances anatomy and pathology. Furthermore, PEPSI bridges
the gaps of pathologies across datasets via our proposed implicit pathology
supervision, and enables co-training across datasets with different pathology
types and potentially missing modalities (Sec. 2.2).

3) We conduct comprehensive evaluations on image synthesis and pathology
segmentation. PEPSI exhibits (i) a remarkable capability to synthesize im-
ages with missing modalities while simultaneously capturing various patholo-
gies (Fig. 4); (ii) superior efficiency and effectiveness on downstream pathol-
ogy segmentation across five public datasets, covering modalities of T1w and
FLAIR, with white matter hyperintensity (WMH) and stroke lesions (Tab. 2).
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Fig. 1. PEPSI’s on-the-fly generator uses 3D anatomy labels (L) and anomaly probabil-
ities (P ) to generate training data with diverse deformations, contrasts, and corruptions
– enhanced by varying intensity profiles in pathological regions (Sec. 2.1).

2 Approach

Sourcing large-scale datasets with high-quality and diverse contrasts for brain
MRI is challenging. Recent works [2,14,15,21] proposed to utilize anatomy labels
to simulate data, yet their data generators are solely based on anatomy and
lack prior information on potential pathologies. Instead, we synthesize data that
emphasizes pathologies (Sec. 2.1), to encourage the model to distinguish between
normal and abnormal regions in the features (Sec. 2.2), thereby facilitating the
transmission of valuable information for downstream pathology segmentations.

2.1 Generating Pathology-encoded Training Data

PEPSI leverages neuroanatomical labels and pathology segmentation to generate
contrast-diverse data while simultaneously emphasizing pathology.
Anomaly Probabilities: We construct a proxy for anomaly maps (P ) using a
priori knowledge of an image’s expected appearance conditioned on its MR con-
trast, where pathology is typically darker in T1w and brighter in T2w/FLAIR:

P (x) =


0 , x /∈ ΩP

1− (I(x)− Imin)/(Imax − Imin) , x ∈ ΩP , I ∈ {T1w}
(I(x)− Imin)/(Imax − Imin) , x ∈ ΩP , I ∈ {T2w, FLAIR}

(1)

where ΩP refers to the pathological region, Imax (Imin) is the regional maximum
(minimum) image intensities: Imax = maxx∈ΩP

I(x), Imin = minx∈ΩP
I(x).

Pathology-encoded Contrast: To generate images with complex brain struc-
tures, we leverage anatomy labels following [21]. As shown in Fig. 1, a random
deformation field (ϕ) is first generated, comprising linear and non-linear trans-
formations [16,21]. After the anatomy labels (L) and anomaly probabilities (P )
are deformed by ϕ, we generate the pathology-encoded images via two steps:
(i) “Anomaly-free” image (S0): We begin with randomly sampling intensities
on the brain anatomy labels, where the regional intensities are generated by
independently sampling a Gaussian distribution for each labeled region [21].
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Fig. 2. PEPSI’s pathology-enhanced, contrast-agnostic training overview (Sec. 2.2).

(ii) Pathology enhancement : We incorporate the anomaly probabilities into the
“anomaly-free” image (S0) to produce a pathology-encoded image (S) – again,
using a priori knowledge of the modality. This is conditioned on the direction
of intensities from white to gray matter in S0: S(x) = S0(x) +∆S(x) ∗ p(x) ,

s.t. ∆S(x) ∼


{0} , x /∈ Ωϕ◦P

N (−µw/2, µw/2) , x ∈ Ωϕ◦P , µw > µg

N (µw/2, µw/2) , x ∈ Ωϕ◦P , µw ≤ µg

(2)

µw (µg) is the mean value of white (gray) matter intensities in S0. A higher µw
resembles T1w, where pathologies appear darker; A lower µw resembles T2w or
FLAIR, where pathologies are typically brighter. (See the dashed box in Fig. 1.)

The pathology-encoded images (S) further undergo a corruption pipeline [15]
(Fig. 1), which includes a model of partial voluming [2], and introduces various
resolutions, noises and scanning artifacts commonly found in clinical protocols.

2.2 Representing across Contrasts, Pathologies, Datasets

Here we present PEPSI’s training framework, which learns to emphasize anoma-
lies and facilitates co-training across datasets with different types of pathology.
Input: We adopt the “mild-to-severe” intra-subject sampling strategy in [21],
which maximizes intra-subject variance to enhance feature robustness. Samples
generated within a mini-batch are from the same subject, yet exhibit varying con-
trasts, corruptions, and pathology intensities, enriching the learning space (Fig. 2).
Dual Guidance Balancing Anatomy and Pathology: We aim to obtain
robust, contrast-agnostic feature representations that capture the distinctive
anatomy of each subject while effectively distinguishing between pathology and
normal tissue. MP-RAGE is the standard T1w MR contrast to delineate anatom-
ical structures in research, but it is insufficient to differentiate many types of
anomalies from normal tissue. FLAIR MRI, on the other hand, highlights areas
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ISLES [12] FLAIR Gold-standard pathology map

(Stroke annotations only)

Fig. 3. Left: an axial slice of a FLAIR from ISLES [12], WMH marked in red. Right:
its gold-standard lesion segmentation, which only includes stroke lesions (no WMH).

of T2 prolongation as bright while suppressing cerebrospinal fluid (CSF), provid-
ing clear visibility of lesions in proximity to CSF [11] – but provides worse con-
trast than MP-RAGE in normal anatomy. PEPSI resorts to both MP-RAGE and
FLAIR as learning targets, to concurrently capture normal anatomy and pathol-
ogy. (Fig. 4 compares the performance of dual-guidance and single-guidance.)

As shown in Fig. 2, the input mini-batch of intra-subject pathology-encoded
samples, {S1, . . . , SN}, are mapped to their corresponding feature space by
a backbone (F), {F1, . . . , FN}. Two linear activation layers are followed to
synthesize the anatomy and pathology images. The synthesis loss is obtained by
collecting the reconstruction errors of all samples in the current mini-batch:

Lsynth = αLIT1 + βLIT2/FLAIR (α, β ∈ {0, 1}, λ ∈ R+) (3)

= α
∑N

i
|ĨT1

i − IT1|+ λ |∇ĨT1
i −∇IT1|

+ β
∑N

i
| ˜
I
T2/FLAIR
i − IT2/FLAIR|+ λ |∇ ˜

I
T2/FLAIR
i −∇IT2/FLAIR|,

where I (Ĩ) is the ground truth (predicted) image, α (β) denote the availability of
ground truth IT1 (IT2/FLAIR), λ is the weight of reconstruction gradient loss [21].
Implicit Pathology Supervision for Multi-pathology/dataset Training:
Co-training across datasets broadens the model’s exposure to various types

of pathology, but also presents inherent challenges – notably, difficulty to ac-
curately synthesize abnormal regions in the missing modality, particularly for
smaller datasets (e.g., “PEPSI (No-Seg)” in Fig. 4). Direct supervision on pathol-
ogy segmentations forces the model to pay more attention to anomalies, but
could potentially result in conflicts during co-training due to the non-exhaustive
pathology annotations across datasets (e.g., “PEPSI (Dir-Seg)” in Fig. 4) – The
above figure shows a FLAIR image from ISLES [12] stroke dataset, despite
the acquired FLAIR image clearly indicating WMH (circled in red), their gold-
standard pathology segmentation only provides/annotates areas of stroke lesions.

Here we propose an indirect pathology supervision approach. Specifically,
for each output modality (i.e., MP-RAGE and FLAIR), we employ a “third-
party”, real-image-supervised pathology segmentation model as a reference, to
encourage the pathology estimated from the predicted and ground truth images
to align, without imposing strict supervision from the gold-standard pathology
maps. As depicted in Fig. 2, we pass all intra-subject training samples through
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Table 1. Quantitative comparisons in anatomy and pathology image synthesis among
PEPSI, its variants, and the state-of-the-art contrast-agnostic synthesis models. The
proposed PEPSI (i) outperforms all the other models, especially on single-modality
datasets; and (ii) preserves its high performance even for cross-modality synthesis.

Dataset
(# of train/test)

MR Contrast Metric SynthSR
[15]

Brain-ID
[21]

PEPSI
(SG-T1w)

PEPSI
(SG-FLAIR)

PEPSI
(No-Seg)

PEPSI
(Dir-Seg)

PEPSI
(Proposed)Input Output

ATLAS [19]
(590/65) T1w T1w

L1 (↓) 0.067 0.65 0.69 - 0.052 0.074 0.036
PSNR (↑) 16.90 17.91 16.54 - 18.46 16.01 21.69
SSIM (↑) 0.804 0.833 0.845 - 0.861 0.831 0.897

ISLES [12]
(137/15)

FLAIR FLAIR
L1 (↓) - - - 0.022 0.018 0.021 0.016

PSNR (↑) - - - 23.87 25.34 24.02 26.03
SSIM (↑) - - - 0.962 0.942 0.926 0.969

ADNI3 [29]
(298/33)

T1w

T1w
L1 (↓) 0.023 0.021 0.025 - 0.022 0.022 0.020

PSNR (↑) 23.51 24.42 24.44 - 24.01 23.37 26.67
SSIM (↑) 0.901 0.899 0.930 - 0.932 0.931 0.935

FLAIR
L1 (↓) - - - 0.043 0.392 0.396 0.036

PSNR (↑) - - - 18.87 19.64 19.58 21.40
SSIM (↑) - - - 0.900 0.901 0.894 0.911

FLAIR

T1w
L1 (↓) 0.027 0.026 0.027 - 0.027 0.029 0.023

PSNR (↑) 23.25 23.74 23.96 - 23.50 23.61 25.62
SSIM (↑) 0.906 0.879 0.916 - 0.919 0.915 0.929

FLAIR
L1 (↓) - - - 0.044 0.0396 0.041 0.034

PSNR (↑) - - - 18.65 19.66 19.31 21.77
SSIM (↑) - - - 0.911 0.910 0.904 0.914

the frozen, reference pathology segmentation models (PT1, PT2/FLAIR). The im-
plicit pathology loss is computed based on the segmentation errors between the
estimated pathology maps from the synthesized and ground truth images:

Lpathol = αLST1 + βLST2/FLAIR (α, β ∈ {0, 1}) (4)

= α
∑N

i
Lseg(S̃T1

i , ST1) + β
∑N

i
Lseg(

˜
S

T2/FLAIR
i , ST2/FLAIR) .

Lseg is the segmentation loss consisting of soft dice and cross-entropy loss [2].
S (S̃) denotes the third-party-referenced (predicted) pathology1. Therefore, the
overall training object writes L = LT1 + ωLT2/FLAIR, ω ∈ R+.

3 Experiments

We demonstrate the effectiveness of PEPSI from two perspectives: (i) Image
synthesis — estimating both anatomy and pathology images, with potentially
missing modalities (Sec. 3.1); (ii) Pathology segmentation — fine-tuning PEPSI
on individual datasets for segmenting a specific type of pathology (Sec. 3.2).
Datasets: To cover a broader range of anatomies and pathologies, we train
PEPSI on 1025 subjects from (# of train/test cases): (i) ADNI3 [29] (298/33),
with 1mm isotropic T1w and FLAIR pairs with WMH; (ii) ATLAS [19] (590/65),
with only T1w and manually segmented stroke lesion for subacute/chronic stroke

1 We train a segmentation model using data with minimal corruption, since it shall
work well only if the inputs are of high quality — It would be uninformative if the
segmentation network provides accurate labels for images of any quality.
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Fig. 4. Qualitative comparisons on T1w and FLAIR synthesis (↔ highlights the ground
truth regions of pathology). Rows (columns) refer to the datasets (compared methods).

patients; (iii) ISLES [12] (137/15), with only FLAIR and stroke lesion segmen-
tation for acute/subacute stroke patients. For pathology segmentation, we also
test on ISBI2015 [6] and MSSEG2016 [10], comprising 21 and 15 WMH patients.

Metrics: For image synthesis, we use L1 distance, PSNR, and SSIM (structural
similarity) [23]. For pathology segmentation, we use Dice scores [2].

Models: We compare PEPSI with the state-of-the-art contrast-agnostic syn-
thesis methods, SynthSR [15] and Brain-ID [21]. We also evaluate PEPSI’s vari-
ants: (i-ii) SG-T1w/FLAIR: single-guidance from MR-RAGE/FLAIR; (iii-iv)
No/Dir-Seg: No/direct supervision from gold-standard pathology segmentations.

Implementation Details: As a general feature representation model, PEPSI
can use any backbone to extract features. For fairer comparison, we adopt the
same five-level 3D UNet [25] as utilized in state-of-the-art models [15,21] we
compare with. Two linear layers are followed for anatomy and pathology im-
age synthesis (Sec. 2.2). The synthetic pathology-encoded data is of size 1283

(Sec. 2.1), with batch size as 4. We use AdamW optimizer, with a learning rate
of 10−4 for the first 160,000 iterations and 10−5 until 240,000 iterations. We set
λ = 1 in Eq. (3), and ω = 0.1 in Sec. 2.2 for 100,000 iterations, and 1 afterward.
The training took ≈ 5 days on one NVIDIA RTX8000 GPU.
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Table 2. Average Dice scores (↑) for pathology segmentation, w/o or w/ PEPSI pre-
trained features. (Numbers in the parentheses denote the convergence/testing epochs
(↓); We directly test on ISBI2015 and MSSEG2016 using models trained from ADNI3.)

Model ATLAS (Stroke) ISLES (Stroke) ADNI3 (WMH) ISBI2015 (WMH) MSSEG2016 (WMH)
T1w FLAIR T1w FLAIR T1w FLAIR T1w FLAIR

w/o PEPSI 0.49± 0.14
(2500)

0.35± 0.13
(2000)

0.50± 0.15
(1600)

0.67± 0.13
(1500)

0.21± 0.05
(1600)

0.39± 0.15
(1500)

0.24± 0.09
(1600)

0.31± 0.10
(1500)

w/ PEPSI 0.71± 0.22
(1000)

0.62± 0.27
(500)

0.69± 0.12
(800)

0.75± 0.10
(500)

0.34± 0.06
(800)

0.57± 0.15
(500)

0.38± 0.10
(800)

0.45± 0.11
(500)

3.1 Anatomy and Pathology Image Synthesis

As shown in Tab. 1, PEPSI achieves the best performance in synthesizing T1w
and FLAIR, across all datasets and pathologies. Notably, PEPSI exhibits superi-
ority on single-modality datasets (ATLAS [19], ISLES [12]), and further demon-
strates strong robustness against contrasts. For example, it maintains consistent
scores for T1w synthesis on ADNI3 [29], regardless of the input modality.

Thanks to the co-training and pathology-enhanced, contrast-agnostic learn-
ing, PEPSI can synthesize images that are not present in the original datasets.
Fig. 4-(a): PEPSI successfully synthesizes T1w and pathology-enhanced images
based on T1w from ATLAS [19], for which ground truth FLAIR is not available.
Remarkably, other models either cannot estimate pathology-enhanced images,
or struggle to accurately capture and highlight (brighten) the areas of pathology.
Fig. 4-(b): ISLES [12] only provides FLAIR and annotations for stroke lesions,
yet PEPSI: (i) accurately synthesizes T1w images with appropriately darkened
pathology regions inferred from the FLAIR input, and (ii) is not constrained to
the stroke lesions manually annotated by ISLES, but instead, captures (bright-
ens) all pathological regions including both stroke lesions and WMH.

3.2 Pathology Segmentation

In Sec. 3.1, we validate PEPSI’s superiority in synthesizing pathology-enhanced
images under various contrasts, providing voxel-level information that is not con-
fined to particular pathology types, but contains comprehensive information on
anomalies. We further illustrate the efficiency and effectiveness of PEPSI features
for downstream pathology segmentations that target a specific pathology.

To this end, we compare the following two models trained on each dataset
and contrast, (i) starting from random weights (w/o PEPSI), and (ii) fine-tuned
from PEPSI pre-trained weights (w/ PEPSI). For ATLAS [19], ISLES [12], and
ADNI3 [29], both models are trained and tested on their respective training and
testing sets. Since ISBI2015 [6] and MSSEG2016 [10] datasets contain only 21
and 15 WMH cases, respectively, we directly evaluate the trained models from
ADNI3 (WMH) [29] on all available cases in these datasets. Note that although
PEPSI has undergone pre-training on synthetic data using anatomy labels and
pathology probability maps from the training sets of ATLAS [19] and ISLES [12]
(Sec. 3), it has not been exposed to any real image during the pre-training stage.
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As shown in Tab. 2, utilizing PEPSI’s pre-trained features largely reduces
the convergence time (by ≈ 60% on average) – and, more importantly, it yields
higher Dice scores compared with training from scratch (i.e., w/o PEPSI) on all
testing pathologies, contrasts and datasets. Furthermore, when directly tested
on the two small datasets (ISBI2015 and MSSEG2016), PEPSI exhibits superior
generalizability compared to models trained without PEPSI pre-trained features.

4 Conclusion

We introduced PEPSI, the first pathology-enhanced, contrast-agnostic feature
representation learning approach for brain MRI. Trained on synthetic data with
diverse contrasts and anomalies, PEPSI exhibits remarkable robustness and ac-
curacy beyond manual annotations of a specific pathology, regardless of MR
contrasts. We demonstrated PEPSI’s performance on image synthesis, covering
T1w and FLAIR with stroke lesions and WMH, and further showcased its effi-
ciency and effectiveness for downstream pathology segmentation on five public
datasets. We believe PEPSI will pave the way for the exciting future of contrast-
agnostic pathology representations for heterogeneous, real-world brain MRI –
enabling studies of diverse brain diseases with large clinical MRI datasets.
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