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Abstract. In the field of computational pathology, deep learning algo-
rithms have made significant progress in tasks such as nuclei segmenta-
tion and classification. However, the potential of these advanced methods
is limited by the lack of available labeled data. Although image synthe-
sis via recent generative models has been actively explored to address
this challenge, existing works have barely addressed label augmentation
and are mostly limited to single-class and unconditional label generation.
In this paper, we introduce a novel two-stage framework for multi-class
nuclei data augmentation using text-conditional diffusion models. In the
first stage, we innovate nuclei label synthesis by generating multi-class se-
mantic labels and corresponding instance maps through a joint diffusion
model conditioned by text prompts that specify the label structure infor-
mation. In the second stage, we utilize a semantic and text-conditional
latent diffusion model to efficiently generate high-quality pathology im-
ages that align with the generated nuclei label images. We demonstrate
the effectiveness of our method on large and diverse pathology nuclei
datasets, with evaluations including qualitative and quantitative analy-
ses, as well as assessments of downstream tasks.

Keywords: Diffusion models · Data augmentation · Pathology Nuclei
Segmentation and Classification.

1 Introduction

In digital pathology, nuclei segmentation and classification are essential tasks
for accurate disease diagnosis and prognosis. These processes allow for the quan-
titative analysis of complex nucleus properties such as size, shape, and distri-
bution [1]. Recent advances in deep learning-based methods have significantly
improved these processes [9, 13]. However, the limited availability of labeled data
remains a challenge, restricting the predictive capabilities of these algorithms.
The time-consuming nature of pathology image acquisition and labeling further
worsens this problem.

To overcome these challenges, data synthesis using deep generative models
has been emerging as a promising solution. While generative adversarial networks



2 H.J. Oh and W.K. Jeong

(GANs) [19, 26] have been widely employed for image generation [7, 25], recent
studies show that diffusion models outperform GANs in natural images [4, 11,
27], making them a new standard method in many image synthesis tasks. These
approaches aim to address the efficiency of data collection and enhance dataset
diversity.

Although generative models have been successful in synthesizing natural im-
ages, we have observed several challenges in adopting this method for pathology
image synthesis. For example, SDM [27] utilizes semantic labels as conditions
for image synthesis, which is later extended to pathology nuclei image synthesis
tasks [17, 23, 30]. Despite their ability to produce high-quality images, pixel-
based diffusion models are less practical for data augmentation due to the time
and computational cost required for training and inference procedures. Moreover,
existing methods have mainly focused on image synthesis rather than realistic
label augmentation; many nuclei data augmentation methods rely on a simple
geometric alteration, such as random perturbation of nuclei positions [17], copy
and pasting [5], or deformation [7], without consideration to the spatial context
of the labels. Yu et al. [30] employed an unconditional diffusion model [11] that
synthesizes nuclei labels with distance transform masks for both dense pixel se-
mantic and instance label generation. However, their approach lacks scalability
for multi-class data, and the standard Gaussian diffusion model is not optimal
for multi-class semantic data synthesis. Instead, Hoogeboom et al. [12] suggested
utilizing categorical distribution for semantic data synthesis, and Park et al. [18]
introduced a joint Gaussian-categorical diffusion model that generates image-
label pair synthesis. However, we observed that unconditional diffusion models
tend to replicate frequently observed structures in the training data, resulting
in biased class distribution, which is especially severe in pathology nuclei label
synthesis.

In this paper, we propose a novel two-stage multi-class pathology nuclei data
augmentation framework addressing the above issues. First, we develop a text-
conditional joint diffusion model for spatially controllable multi-class nuclei la-
bel synthesis, inspired by the text-conditional generation model [21] that utilizes
text-image alignment with target-related text prompts to generate fine-grained
images. To achieve this, we utilize a pre-trained text encoder that is specifi-
cally designed for pathology images [29]. Second, we formulate a semantic and
text conditional latent diffusion model (LDM) based on the pretrained LDMs
(e.g., Zhang et al. [32]) and fine-tune it for pathology nuclei image synthesis,
which significantly enhances performance and efficiency in the sampling process.
We demonstrate the effectiveness of our method across various datasets stained
with different modalities, conducting comprehensive evaluations that assess both
the quality of synthesized data and the performance of downstream tasks. Our
contributions can be summarized as follows:

– We introduce a novel two-stage framework for pathology nuclei data aug-
mentation consisting of multi-class label synthesis and high-quality realistic
image synthesis. We pioneer a multi-class dense pixel-by-pixel label gen-
eration strategy and tailor the pretrained LDMs to synthesize pathology
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Fig. 1: Overview of the proposed two-stage data synthesis framework, consisting
of label and image synthesis steps. The framework utilize spatial text condition
cpr for label synthesis (a). For image synthesis (b), we fine-tune the pretrained
latent diffusion model with semantic condition cs and text condition cpr.

images corresponding to the generated nuclei label images, ensuring both
image quality and computational efficiency.

– We propose text conditioning for detailed guidance of the label synthesis
process to mitigate the inherent bias of unconditional models, which typically
favor generating labels with nucleus proportions frequently observed in the
training data. Our diffusion-based method implicitly learns the spatial layout
of nuclei while text conditioning allows fine control of class distribution in
the synthesized image, which effectively avoids data imbalance problems.

– We validate our methodology on large public datasets with a variety of stain-
ing modalities, and its effectiveness has been demonstrated through com-
prehensive qualitative and quantitative analysis, along with evaluation of
downstream tasks.

2 Method

In this section, we introduce a novel two-stage data augmentation framework
for multi-class pathology nuclei data using diffusion models. We provide back-
ground on diffusion models (Sec. 2.1), followed by detailed descriptions of our
approach to text conditional label synthesis (Sec. 2.2) and LDM-based semantic
and text conditional image synthesis (Sec. 2.3). The overview of the framework
is illustrated in Fig. 1.

2.1 Background: Diffusion Models

Diffusion models [11] synthesize data from a learned data distribution by con-
verting noise, operating on a forward and backward diffusion processes. In the
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forward process q(xt|xt−1), noise ϵt is incrementally added to data x0 over
timesteps t ∈ {1, ..., T} according to a predefined noise schedule βt, resulting
in a pure noise xT that aligns with a specific distribution. Then, the model ϵθ
learns to predict the noise by the backward process pθ(xt−1|xt) to reconstruct
x0. Standard diffusion models generally employ a Gaussian noise for ordinal data
synthesis such as images. The diffusion process is then defined as:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

pθ(xt−1|xt) := N (xt−1;µθ(xt), σ
2
t I). (2)

The training objective is then defined as:

Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
. (3)

For synthesizing categorical data y such as semantic labels, a categorical
diffusion model is employed, using a categorical distribution C as defined by
Hoogeboom et al. [12]:

q(yt|yt−1) := C(yt; (1− βt)yt−1 + βt/K), (4)

pθ(yt−1|yt) := C(yt−1;Θθ(yt)), (5)

where K represents the number of categories and Θ is the probability mass
function of C.

For pair-wise synthesis of ordinal and categorical data, a Gaussian-categorical
diffusion model [18] formulates a joint distribution of Gaussian and categorical
distributions NC as:

pθ(mt−1|mt) := NC(mt−1;µθ(mt), Σθ(mt), Θθ(mt)), (6)

where m indicates the data pair (x,y).

2.2 Text Conditional Multi-class Label Synthesis

Synthetic nuclei label requires an corresponding instance label to support ad-
vanced nuclei analysis algorithms. Considering the difficulty of nucleus instance
separation because of clustered nucleus, we formulate a text conditional joint dif-
fusion model that simultaneously generates semantic label with structure map
for nuclei separation. First, we define the semantic label as one-hot shaped vector
y ∈ RH×W×K with categorical diffusion process, where K indicates the number
of classes. Additionally, we define a 3-channel structure map x ∈ RH×W×3 as
the concatenation of a binarized semantic label with x- and y-directional dis-
tance transform maps inspired by [30] with Gaussian diffusion process (see x0

in Fig. 1a). We define a data pair m0 = (x0, y0) ∈ RH×W×6 by concatenating
x0 and y0 along channel dimension, while y0 is embedded into 3-channel via
learnable parameters. Then, the joint diffusion model is trained to generate a
data pair m0 as Eq. 6.
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Fig. 2: Example of generated data using text conditions cpr (b). (a) shows the
synthetic data by related works.

Furthermore, we incorporate a pre-trained text encoder in the pathology
domain, PLIP [29], encoding text prompts depicting tissue type, nuclei propor-
tions, and class types while freezing the parameters of the text encoder. This
allows fine control over the label generation process through the alignment of
text and image (see Fig. 2), preventing the learning bias in the distribution of the
training data that unconditional models have (see Fig. 3a). Conditioned by text
embedding cpr, the joint diffusion model is trained through the backward diffu-
sion process pθ(mt−1|mt, cpr) as depicted in Fig. 1a, enabling more sophisticated
label generation using text-image alignments. Lastly, we create instance label us-
ing synthesized semantic label y0 and distance masks x0 by marker-controlled
watershed algorithm [28].

2.3 Conditional Image Synthesis with Pretrained LDM

Latent diffusion model (LDM) [20] compresses an input image into lower di-
mensional vector z and performs the diffusion process within the latent space,
lowering the cost required for training and inference of diffusion models. The
generated sample z0 is then reconstructed into a high resolution image in the
pixel space. Since training an LDM from scratch consumes much resources, we
fine-tune a text conditional LDM for pathology, PathLDM [29], to leverage a rich
domain-specific knowledge without changing the pretrained weights. To synthe-
size the images reflecting semantic conditions, we introduce a scalable component
to influence the generation process. Inspired by [32], the scalable component is
a trainable copy of the diffusion model that is connected to the original model
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via zero-initialized convolutional layers to prevent adversely affecting noise to
the network’s parameters. We only train this scalable component with semantic
condition cs ∈ RH×W×(K+3), which is a combination of semantic labels, distance
transform maps, and instance edge map. As illustrated in Fig. 1b, the semantic
condition passes through learnable embedding layer, and computed with zt. The
training objective is then formulated as:

Ez,ϵ∼N (0,1),t,cs,cpr

[
∥ϵ− ϵθ(zt, cs, cpr, t)∥22

]
, (7)

where cpr represents the text embedding.

3 Experiment

3.1 Datasets

We utilize three nuclei segmentation datasets: the first two, Lizard [8] and Pan-
Nuke [6], were stained with hematoxylin and eosin (H&E), and the third, En-
doNuke [15], was stained using immunohistochemistry (IHC) techniques. Lizard
is the largest publicly available pathology nuclei dataset, consisting of colon tis-
sue samples. It is derived from six different data sources and contains 495,179
nuclei, representing collections from multiple institutions. We pre-process the
image samples into 13,064 256×256 sized patches as done by [23]. PanNuke
is a pan-cancer nuclei dataset, incorporating 19 different tissue types. It fea-
tures 205,343 nuclei across 7,901 patches, each 256×256 pixels in size at 40x
higher magnification. Finally, EndoNuke is a endometrial tissue dataset, includ-
ing 210,419 nuclei labels. These images have been resized and organized into a set
of 1,780 patches, each 256×256 pixels in size. For training the generative model,
we divided each dataset into training and test sets with these ratios: 80:20 for
PanNuke, 85:15 for EndoNuke, and the NASDM [23] split for the Lizard dataset.

3.2 Implementation details

We use a single A6000 GPU with batch size 6 for the label synthesis model and
a single RTX4090 GPU with batch size 16 for the image synthesis model. We set
the timestep T = 1000 for training and T = 100 for DDIM-based sampling [24]
for both models. For image and label synthesis, we utilize distinct text prompts.
The label synthesis prompts are based on the ground truth labels and data de-
scriptions. These prompts define the tissue type (e.g., colon), nucleus proportion
that is ratio of pixels representing nuclei in the label map, and identify the types
of nuclei present. Similarly, for image generation, the prompts include both tis-
sue type and nuclei type, as used for label synthesis, and additionally specify the
staining method (e.g., H&E or IHC). For the label synthesis model, we utilized
the U-Net model from [16] and modified input/output channels as data pairs
and followed text conditioning as done by Imagen [21].
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Table 1: Quantitative results on generated labels using FSD metric and inference
time per sample in second. [·] is type of text conditions: Tis, NP , and C indicates
tissue type, nucleus proportion, and class types, respectively.

Method Lizard PanNuke EndoNuke Time (sec)
Yu et al. [30] 1018.19 1130.74 940.41 122.14
Hoogeboom et al. [12] 36.20 438.19 141.49 28.73
Ours (Uncond.) 12.00 41.28 190.81 -
+ cpr[T is] - 9.11 - -
+ cpr[T is,NP ] 4.40 4.45 60.42 -
+ cpr[T is,NP,C] 4.10 4.31 15.11 17.85
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Fig. 3: Graphical analysis. The unconditional model tends to replicate the high-
frequency labels from the training data set (a), while the conditional model can
generate labels with specific nucleus proportions (b). (c) shows that the nucleus
proportion and class type conditions are effective for synthesizing the target label
set. We also observe that it is 100% consistent for the given class types as (d).

3.3 Results

In Table 1, we demonstrate quantitative results on label synthesis comparing
with Yu et al. [30], Hoogeboom et al. [12], and ablation studies of text condi-
tions. First, we use Fréchet Segmentation Distance (FSD) [2] metric. The labels
synthesized with Gaussian diffusion model by Yu et al. show a poor FSD score
with random-looking noise (see Fig. 2a). The categorical diffusion model sug-
gested by Hoogeboom et al. demonstrates a comparable FSD score on the Lizard
dataset; however, generated label classes are biased. Similarly, our unconditional
model also showed biased generation as depicted in Fig. 3a. As we incorporated
more structure-related text conditions, our model well utilized the text-image
alignment for desired label generation. Especially, tissue type text conditioning
affects well in PanNuke, the multi-tissue type dataset.

Table 2 shows the image quality evaluation compared to semantic conditional
generative methods using Fréchet Inception Distance (FID) [10] and Inception
Score (IS) [22] metrics. Our fine-tuned semantic-text conditional LDM achieved
the best in FID and second in IS next to SDM. However, as shown in Fig. 2, SDM
generated unrealistic color images, which leads to higher IS. Moreover, as LDM
requires less time for image generation, it can dramatically reduce the time for
image generation, up to 33.6× faster, compared to SDM. As a result, the tailored
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Table 2: Quantitative comparison of generated image quality to semantic
condition-based generative models with FID and IS metrics, and required time
to generate a sample in second.

Method Lizard PanNuke EndoNuke Time (sec)FID↓ IS↑ FID↓ IS ↑ FID↓ IS ↑
pix2pixHD [26] 99.97 1.59 100.36 2.82 95.37 1.95 -
SPADE [19] 60.93 1.71 71.03 3.35 68.02 1.63 -
SDM [27] 48.16 2.45 95.44 3.92 91.42 2.24 180
Ours 37.69 2.36 50.29 3.59 57.18 2.14 5.35

Table 3: Downstream segmentation and classification performance. The best
results are in bold and the second best are underlined.

Method Lizard PanNuke Endonuke
Dice AJI Fd Dice AJI Fd Dice AJI Fd

Baseline 0.618 0.381 0.616 0.782 0.598 0.763 0.877 0.601 0.811
Conventional Aug. 0.675 0.423 0.646 0.816 0.641 0.791 0.891 0.624 0.823
CutOut [3] 0.700 0.463 0.674 0.799 0.631 0.781 0.912 0.649 0.843
CutMix [31] 0.690 0.444 0.661 0.807 0.643 0.787 0.898 0.586 0.799
SDM [27] 0.718 0.487 0.699 0.821 0.654 0.800 0.914 0.661 0.847
Ours 0.714 0.479 0.692 0.822 0.655 0.798 0.911 0.656 0.850

LDM can produce high-quality images that match the semantic and textual
conditions, providing a computationally efficient alternative to traditional pixel-
based diffusion models for pathology nuclei image synthesis.

We also conducted downstream nuclei segmentation and classification with
synthetic data, using patches that were excluded from training the generative
model. We use HoVer-Net [9] as our baseline network for downstream task evalua-
tion. We utilize Dice coefficient and Aggregated Jaccard Index (AJI) [14] metrics
to quantify segmentation performance, and detection quality Fd for classification.
In Table 3, the conventional augmentation improves the baseline performance.
We generated image-label data from a text prompt that conditions the label
generation process and augmented the training set with the same number of
patches as SDM’s. For SDM data generation, we used ground truth labels. Ours
improved baseline with conventional augmentation and comparable score within
every metric to SDM. Considering the data generation cost of SDM as in Table 2,
our approach is highly promising.

4 Conclusion

In this paper, we proposed a novel two-stage multi-class nuclei data augmen-
tation framework, consisting of label synthesis followed by image synthesis. We
showed that the text conditional label synthesis strategy enables manipulation of
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the synthesized labels. To the best of our knowledge, this is the first attempt to
leverage pretrained LDM for nuclei image synthesis aligning with the correspond-
ing label, securing both high-quality sampled images and resource effectiveness.
Lastly, we validate the efficacy of the proposed scheme on downstream tasks,
improving the nuclei segmentation and classification performance.

For future work, we plan to explore synthesizing bigger-sized images, such as
entire whole slide images, to expand the scalability of generative data augmen-
tation.
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