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Abstract. Cone-Beam Computed Tomography (CBCT) is an indispens-
able technique in medical imaging, yet the associated radiation exposure
raises concerns in clinical practice. To mitigate these risks, sparse-view
reconstruction has emerged as an essential research direction, aiming
to reduce the radiation dose by utilizing fewer projections for CT recon-
struction. Although implicit neural representations have been introduced
for sparse-view CBCT reconstruction, existing methods primarily focus
on local 2D features queried from sparse projections, which is insuffi-
cient to process the more complicated anatomical structures, such as the
chest. To this end, we propose a novel reconstruction framework, namely
DIF-Gaussian, which leverages 3D Gaussians to represent the feature
distribution in the 3D space, offering additional 3D spatial information
to facilitate the estimation of attenuation coefficients. Furthermore, we
incorporate test-time optimization during inference to further improve
the generalization capability of the model. We evaluate DIF-Gaussian on
two public datasets, showing significantly superior reconstruction perfor-
mance than previous state-of-the-art methods. The code is available at
https://github.com/xmed-lab/DIF-Gaussian.
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1 Introduction

Computed Tomography (CT) is an indispensable technique in medical imaging,
providing detailed internal views of the body to aid in diagnosis and treatment
planning. Recently, Cone-Beam Computed Tomography (CBCT) has gained
popularity due to its ability to offer high-resolution images with faster scanning
speed [21] compared to traditional CT. Sparse-view reconstruction [16,25,26,30]
has been introduced to reduce radiation exposure, where fewer projections are
used without significantly reducing image quality. In this research, we follow
[13] to study the problem of extremely sparse-view (≤10) CBCT reconstruc-
tion, which is more challenging yet promising because extremely low radiation
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allows more frequent 3D scanning during the surgery, thereby enhancing surgical
precision/adaptability, and meanwhile ensuring patient safety.

Sparse-view CBCT reconstruction aims to reconstruct 3D CT volumes from
sparse 2D projections. Previously, FDK [3] was proposed based on filtered-
backprojection (FBP) for CBCT reconstruction, while it requires hundreds of
views to avoid streaking artifacts. Although ART-based methods [1,4,18] have
been proposed for sparse-view reconstruction, their application is primarily ef-
fective in scenarios involving tens of views and the iterative optimization pro-
cess is time-consuming. In recent years, learning-based methods become popular
in sparse-view reconstruction with the development of deep learning technolo-
gies. Denoising methods [6,8,16,25,31] (2D→2D) have been introduced for the
reconstruction of conventional fan/parallel-beam CT. When adapted to CBCT
through slice-wise processing, these methods struggle to ensure the spatial consis-
tency of reconstructed 3D volumes. Voxel-based approaches [7,10,24,28] (2D→3D)
are proposed for single/orthogonal-view CBCT reconstruction, while extending
these methods to sparse-view reconstruction encounters significant challenges
due to the extremely high memory requirements, which ultimately lead to lim-
ited spatial resolution. Inspired by implicit neural representations [17,20], re-
searchers [13,14,23,30] represent CBCT as a continuous attenuation coefficient
field, offering a new path for sparse-view CBCT reconstruction. Specifically,
NAF [30] and NeRP [23] are proposed to minimize the error between real and
synthesized projections. However, per-sample optimization is time-consuming
and unsuitable for extremely sparse-view reconstruction due to a lack of prior
knowledge. Lin et al. [13] propose DIF-Net trained on a CBCT dataset to learn
an implicit mapping from extremely sparse projections to the intensity field. Nev-
ertheless, only local semantic features are queried from 2D projections, which
are insufficient for processing more complicated anatomical structures.

3D Gaussians [9], as a powerful and explicit representation of radiance fields,
can be efficiently rendered by splatting [33]. Follow-up works extended 3D Gaus-
sian Splatting [9] to downstream applications, such as mesh reconstruction [5,12]
and dynamic scene synthesis [15,27,32], achieving state-of-the-art performance.
In this work, we propose a new reconstruction framework DIF-Gaussian built
on DIF-Net [13] by leveraging 3D Gaussians to explicitly represent the feature
distribution in the 3D space, which provides additional 3D spatial information to
facilitate the estimation of attenuation coefficient values. A 3D Gaussian is de-
fined by a collection of parameters: the 3D position, covariance matrix, and rep-
resentative features. These parameters are derived from sparse-view projections
and a predetermined set of points that indicate the initial positions of Gaussians.
To be more specific, a 2D encoder first extracts sparse-view feature maps from
the input projections. Subsequently, the initial position of each Gaussian serves
as a reference point to query features from sparse-view features. Multi-layer per-
ceptrons are then utilized to learn Gaussian parameters from queried features.
Therefore, hybrid features of points can be queried not only from sparse-view
feature maps, but also from 3D Gaussians to enhance the representation. To
improve the generalization capability of our DIF-Gaussian, we further propose
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test-time optimization (TTO) that can be applied during the model inference.
Specifically, TTO fine-tunes the well-trained model with the test data (i.e., only
sparse-view projections) based on the constraint derived from the foundational
principles of X-ray imaging. Finally, extensive experiments and ablative studies
are conducted on two public datasets (chest and dental) with diverse anatomy,
demonstrating the effectiveness and efficiency of our DIF-Gaussian and TTO.

In summary, the contributions of our work mainly include 1.) we are the first
to introduce 3D Gaussians as an explicit feature representation in supervised
CBCT reconstruction; 2.) we propose a new framework DIF-Gaussian, where
hybrid features of points are queried from learned 3D Gaussians and sparse-view
projections to enhance the representation; 3.) we propose test-time optimization
that can be applied during inference to further improve the generalization capa-
bility of DIF-Gaussian; 4.) experiments are conducted on two public datasets,
showing that DIF-Gaussian significantly outperforms previous methods by a re-
markable margin.

2 Methods

In this section, we first describe the problem formulation of sparse-view CBCT
reconstruction based on implicit neural representations. Then, we formally in-
troduce the proposed DIF-Gaussian framework and test-time optimization.

2.1 Problem Formulation

Following DIF-Net [13], we represent CT as a continuous field, where the model
aims to learn an implicit mapping function g such that v = g(I,p), where
I = {I1, . . . , IK} are K sparse 2D projections, p ∈ R3 is an arbitrary point de-
fined in the 3D space, and v ∈ R is the corresponding attenuation coefficient (or
saying intensity in [13]) value. During training, projections are simulated from
CT by digitally reconstructed radiographs (DRRs), and ground-truth attenua-
tion coefficients are interpolated from the CT for point-wise supervision. In the
inference stage, the model estimates the attenuation coefficient of the grid point
centered at each CT voxel.

2.2 DIF-Gaussian: Learning 3D Gaussians

Based on the above formulation, we develop a novel framework DIF-Gaussian
(see Figure 1) for effective and efficient extremely sparse-view CBCT reconstruc-
tion. Overall, DIF-Gaussian learns 3D Gaussians from sparse projections as an
explicit 3D representation, and the features of a sampled point are queried from
both sparse-view features and 3D Gaussians to enhance the representation.

3D Gaussians. We define the properties of a 3D Gaussian – 3D position u ∈ R3,
covariance matrix Σ ∈ R3×3, and representative features F g ∈ RCg

. Inspired
by [9], the anisotropic covariance matrix can be formulated as Σ = LTL and
L = MrMs ∈ R3×3, where Mr,Ms ∈ R3×3 are rotation and scaling matrices.
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Fig. 1. Overview of our DIF-Gaussian. 3D Gaussian parameters are learned from K-
view intermediate features F t. For a 3D point p, hybrid representative features are
queried from Gaussians (3D) and K-view features (2D) to estimate its attenuation
coefficient v.

Additionally, Mr,Ms can be determined by a 4-dimensional quaternion r =
[r1, r2, r3, r4] ∈ R4 (∥r∥2 = 1) and scaling factors s = [s1, s2, s3] ∈ R3 defined in
3 dimensions, respectively. Specifically, Mr and Ms can be written as

Mr =

1− 2r23 − 2r24 2r2r3 − 2r1r4 2r2r4 + 2r1r3
2r2r3 + 2r1r4 1− 2r22 − 2r24 2r3r4 − 2r1r2
2r2r4 − 2r1r3 2r3r4 + 2r1r2 1− 2r22 − 2r23

 , Ms =

s1 0 0
0 s2 0
0 0 s3

 . (1)

Hence, a 3D Gaussian can be represented as a set of parameters {u, F g, r, s}.
Learn 3D Gaussians from Projections. Given K-view projections, a shared
2D encoder is applied to extract semantic features. K-view feature maps (tth
intermediate outputs of the 2D encoder) are denoted as F t = {F t

1 , . . . , F
t
K} ⊂

RW t×Ht×Ct

. For a 3D Gaussian with the predetermined initial position û, we
query view-specific features from F t

k using û:

F t
k(û) = Interp

(
F t
k, πk(û)

)
∈ RCt

, for k ∈ {1, . . . ,K}, (2)

where πk : R3 → R2 is the projection function of kth view, and Interp(·) indicates
bilinear interpolation. K queried features are aggregated with a max-pooling
layer to obtain F t(û) = Max-Pooling({F t

1(û), . . . , F t
K(û)}) ∈ RC . Multi-layer

perceptions (MLPs) are then applied to learn Gaussian parameters:

[∆u, F g, r, s] = MLPs
(
F t(û)

)
∈ R3+Cg+4+3, (3)

where ∆u indicates the position offsets and the actual position of the Gaussian
is u = û + ∆u. In practice, the initial position û is defined as the coordinate
of a point and will not change after initialization. Hence, Ng 3D Gaussians can
be initialized with a set of points P = {û1, . . . , ûNg

} indicating their initial
positions and other parameters (i.e., {∆u, F g, r, s}) can be then estimated from
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input projections based on initial positions (Eqn. 3). In practice, we voxelize the
space into V×V×V voxels, and P are selected as the centroids of V 3 voxels.

Query Features from 3D Gaussians. Given a point p ∈ R3 and a 3D Gaus-
sian G = {u, F g, r, s}, we denote the covariance matrix of G as Σ, which is
calculated using r and s (Eqn. 1). Then, the querying weight is defined as

w(p,G) = 1√
(2π)3|Σ|

· exp
(
− 1

2
(p − u)TΣ−1(p − u)

)
. (4)

Ng (Ng = V 3) 3D Gaussians are used to explicitly represent the feature distri-
bution in the 3D space, which means that we can query features of p directly
from the 3D space based on these Gaussians:

Fg(p) =
Ng∑
i=1

w(p,Gi) · F g
i ∈ RCg

, (5)

where Gi = {ui, F
g
i , ri, si} indicates ith Gaussian. Denoting F = {F1, . . . , FK} ⊂

RW×H×C as the K-view feature maps (final outputs of the 2D encoder), we can
additionally query features of p from K-view projections as

F(p) = Max-Pooling
({

F1(p), . . . , FK(p)
})

∈ RC , (6)

where Fk(p) = Interp
(
Fk, πk(p)

)
for k ∈ {1, . . . ,K}. Then, features queried

from 2D (F(p) in Eqn. 6) and 3D (Fg(p) in Eqn. 5) are concatenated as the
hybrid (2D+3D) representation of the point p. Finally, MLPs applied to estimate
the corresponding attenuation coefficient v = MLPs

(
concat

[
Fg(p),F(p)

])
.

Implementation. In practice, we follow [13] to use U-Net [19] as the 2D en-
coder with the output channel C = 128. We choose the outputs of the final
downsampling layer as F t (Ct = 1024). Additionally, Cg = 128 and V = 12
in our experiments. To simplify the calculation of Eqn. 5, we choose the three
nearest Gaussians of the point p for approximation rather than using all Gaus-
sians, where the distance is calculated based on the coordinates of p and initial
positions û of Gaussians. 10,000 points are randomly sampled from the 3D space
for training, and point-wise mean-square-error (same as in [13]) is used for model
optimization. Refer to the code (to be released later) for more details.

2.3 Test-Time Optimization (TTO)

Given a ray R(λ) = ps + λ(pd − ps) for λ ∈ [0, 1], where ps is the X-ray source
and pd is a point at the detector, the total energy attenuation accumulated by
the ray (discrete approximation with Nr + 1 points) is given as

e(R) ≈
∥∥pd − ps

∥∥
2

Nr∑
i=0

µ
(
ps +

i

Nr
(pd − ps)

) 1

Nr
, (7)
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where µ : R3 → R indicates the attenuation coefficient value of a given point. Nu-
merically, the true e(R) can be measured from the detector (at pd), and µ should
satisfy Eqn. 7. Based on the above constraint, we further propose test-time op-
timization to improve the generalization capability of the well-train model g
during inference. Specifically, given sparse projections I, the mapping function
µ in Eqn. 7 can be formulated as µ(·) ≡ g(I, ·). Then, we can optimize the pro-
jection error ∥e(R)− ê(R)∥2 to fine-tune g, where e(R) is the true measurement
of pd in the projection and ê(R) is calculated using Eqn. 7.

3 Experiments

To validate the effectiveness of our proposed framework DIF-Gaussian and test-
time optimization (TTO), we compared the reconstruction performance with
previous state-of-the-art (SoTA) methods on two publically available CT (or
CBCT) datasets. Experiments demonstrate the superiority of our DIF-Gaussian
with a remarkable margin to SoTA, and our ablative study also shows that
TTO can further improve the generalization capability of DIF-Gaussian during
the model inference.

3.1 Experimental Settings

Datasets. Experiments are conducted on two public datasets – LUNA16 [22]
and ToothFairy [2]. LUNA16 [22] contains 888 chest CT scans, split into 738/50/
100 for training/validation/testing; ToothFairy [2] consists of 443 dental CBCT
scans, split into 343/25/75 for training/validation/testing. We follow [13] to
preprocess CT scans into 256×256×256 volumes with consistent spacing, i.e.,
[1.6, 1.6, 1.6] mm for chest CT and [2.1, 5.4, 5.4] mm for dental CBCT. The
viewing angles of projections are uniformly sampled in the range of 180◦.

Training Details. The proposed DIF-Gaussian is implemented with PyTorch
and trained on 2 ∼ 4 NVIDIA RTX 3090 GPUs (2 GPUs for 6/8-view and 4
GPUs for 10-view). The model is optimized using stochastic gradient descent
(SGD) with a momentum of 0.98 and a learning rate of 0.01 (decayed per epoch
by a factor of 0.0011/MAX_EPOCH). The model is trained for 400 epochs on
LUNA16 [22] and 600 epochs on ToothFairy [2] with a batch size of 8.

Evaluation Metrics. Following previous works [13,30], peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) are evaluated to measure the
reconstruction quality, where higher values indicate better performance.

3.2 Results

Comparison with SoTA. In Table 1, we compare our proposed DIF-Gaussian
with self-supervised methods, including FDK [3], SART [1], NAF [30], and
NeRP [23], where no training data is required, and the optimization is conducted
only based on sparse projections. Additionally, we compare data-driven methods,
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Table 1. Quantitaive evaluation of compared methods on two public datasets with
different numbers of projection views (6/8/10). The reconstruction resolution is 2563.
PSNR (dB) and SSIM (10-2) are evaluated to measure the reconstruction quality
(higher is better). Best values are bolded, and the second-best values are underlined.

Method Type LUNA16 [22] (Chest CT) ToothFairy [2] (Dental CBCT)
6-View 8-View 10-View 6-View 8-View 10-View

FDK [3]
Self-

Supervised

15.34|35.78 16.58|37.89 17.40|39.85 17.07|39.90 18.42|43.29 19.58|47.21
SART [1] 19.70|64.36 20.06|67.80 20.23|70.23 20.04|64.98 21.92|67.86 22.82|71.53
NAF [30] 18.76|54.16 20.51|60.84 22.17|62.22 20.58|63.52 22.39|67.24 23.84|72.52
NeRP [23] 23.55|74.46 25.83|80.67 26.12|81.30 21.77|72.06 24.18|78.83 25.99|82.08
FBPConvNet [8] Data-Driven:

Denoising

24.38|77.57 24.87|78.86 25.90|80.03 27.22|79.33 27.72|81.90 28.13|83.51
FreeSeed [16] 25.59|77.36 26.86|78.92 27.23|79.25 26.35|78.98 27.08|81.38 27.63|84.40
BBDM [11] 24.78|77.03 25.81|78.06 26.35|79.38 26.29|78.57 27.28|80.33 28.00|83.96
PixelNeRF [29] Data-Driven:

INR-based

24.66|78.68 25.04|80.57 25.39|82.13 24.85|80.91 25.37|82.11 25.90|83.25
DIF-Net [13] 25.55|84.40 26.09|85.07 26.67|86.09 25.78|83.62 26.29|84.81 26.90|86.42
DIF-Gaussian (ours) 28.48|91.31 29.46|92.57 30.01|93.29 27.92|90.19 28.35|90.76 29.24|92.13

Table 2. Comparison regarding the number of
parameters, time and memory (MB) for the
model training and inference. Setting: 6-view
chest reconstruction (resolution = 2563). Batch
size is set to 1 for training memory calculation.

Method Param.
(M)

Training Inference
Time (h) Mem. Time (s) Mem.

FDK [3] - - - 0.3 -
SART [1] - - - 60.2 327
NAF [30] 14.3 - - 433.1 2933
NeRP [23] 0.7 - - 937.5 8229
FBPConvNet [8] 34.6 2.6 2821 3.7 2169
FreeSeed [16] 8.7 2.2 2197 1.7 1931
BBDM [11] 237.1 11.7 10345 2176.5 6481
PixelNeRF [29] 24.7 10.3 4963 40.4 9693
DIF-Net [13] 31.1 4.9 5447 1.1 4409
DIF-Gaussian (ours) 31.7 5.3 5957 1.8 5031

Table 3. Ablation on test-time op-
timization (TTO) and the number
(Ng) of Gaussians. PSNR (dB) and
SSIM (10-2) are evaluated. Experi-
ments are conducted on 6-view re-
construction (resolution = 2563).

Training Set TTO Test Set
LUNA16 ToothFairy

LUNA16 ✗ 28.48|91.31 -
✓ 28.59|91.52

ToothFairy ✗ - 27.92|90.19
✓ 28.04|90.38

LUNA16
+ToothFairy

✗ 27.14|89.40 26.92|88.37
✓ 27.44|90.62 27.23|89.29

Ng = 83 Ng = 123 Ng = 163

LUNA16 28.42|91.18 28.48|91.31 28.48|91.32
ToothFairy 27.82|90.01 27.92|90.19 27.93|90.19

including denoising-based (FBPConvNet [8], FreeSeed [16], and BBDM [11]) and
implicit neural representation (INR)-based (PixelNeRF [29] and DIF-Net [13]).
Experiments are conducted with different numbers (6/8/10) of projection views,
and the reconstruction resolution is 256×256×256. Quantitative and qualitative
results are shown in Table 1 and Figure 2, respectively. The quality of CT re-
constructed by self-supervised methods is very poor as no prior knowledge is
given, and the number of views is extremely limited. Denoising-based methods
often suffer from jitter near organ boundaries because slice-wise (2D) denoising
cannot guarantee 3D spatial consistency. Although previous INR-based methods
can reconstruct CT with satisfactory contours, details are severely lost as the
anatomical structures of the chest and dental CT are more complicated than the
knee [13]. Our DIF-Gaussian significantly outperforms all compared methods on
both two datasets by a remarkable margin. Furthermore, it is worth noting that
even with only 6 views, our proposed DIF-Gaussian can still reconstruct CT
with better image quality than other methods with 10 views.
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FDK SART NAF NeRP FBPConvNet FreeSeed BBDM PixelNeRF DIF-Net DIF-Gaussian GT

Fig. 2. Visualization of different methods. Setting: 6-view reconstruction (resolution =
2563). Top/bottom 3 rows: LUNA16/ToothFairy axial, coronal, and sagittal slices.

Efficiency Analysis. In Table 2, we compare the training and inference effi-
ciency of different reconstruction methods. For self-supervised methods, the in-
ference includes per-sample optimization and network inference. Self-supervised
methods (except FDK [3]) often require a long time for optimization during the
reconstruction. BBDM [11] reconstructs CT with the lowest speed due to the
complex, iterative nature of diffusion models, requiring many sequential steps
to refine. More importantly, our DIF-Gaussian significantly improves the recon-
struction performance, yet maintaining reconstruction efficiency that is compara-
ble to prior DIF-Net [13]. Note that TTO is not incorporated into DIF-Gaussian
and will be discussed separately in the ablation study (next paragraph).

Ablation Study. In Table 3, we compare the performance of inference with
and without test-time optimization (TTO) in different experimental settings.
Results show that TTO can improve the reconstruction performance in both
two datasets. Specifically, the extent of improvement depends on how closely the
test data aligns with the overall distribution of training data. For instance, the
improvement is 0.1/0.2 PSNR/SSIM for a model trained and tested on LUNA16,
whereas the improvement is more substantial (0.3/0.8 PSNR/SSIM) for a model
trained on LUNA16+ToothFairy and tested on LUNA16. Additionally, we com-
pare different numbers (Ng = 83/123/163) of Gaussians used in DIF-Gaussian
and find that Ng = 123 is the optimal choice in both two datasets for balancing
performance improvement and processing efficiency.

4 Conclusion

In this study, we present a new framework DIF-Gaussian for extremely sparse-
view CBCT reconstruction. Instead of solely relying on features queried from 2D
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sparse-view projections (like DIF-Net [13]), 3D Gaussians are introduced to pro-
vide additional 3D spatial information and facilitate the learning of attenuation
coefficients. Additionally, test-time optimization (TTO) is proposed to further
improve the generalization capability of the model during inference. Experiments
conducted on two public datasets (chest CT and dental CBCT) demonstrate the
superior reconstruction performance of our DIF-Gaussian, as well as the effec-
tiveness of TTO. In our experiments, the predetermined initial position of a
Gaussian is at the centroid of a voxel. Alternatively, the initial positions could
be points located on the boundary of an organ or uniformly distributed within
specific organs. However, exploring these alternatives involves additional tasks
(e.g., boundary/organ detection), which will be left as our future work.
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