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Abstract. The mask autoencoder (MAE) is utilized in functional mag-
netic resonance imaging (fMRI) analysis to construct brain representa-
tion learning models and conduct prediction for various fMRI-related
tasks (e.g., disease detection). It involves pretraining the model by re-
constructing signals of brain regions that are randomly masked at differ-
ent time segments and subsequently fine-tuning it for prediction tasks.
Although the MAE helps to improve prediction performance, directly
applying it to fMRI may lead to sub-optimal results for the follow-
ing reasons: 1) The reconstruction process is not task-aware, meaning
the extracted brain representations are unable to sufficiently consider
downstream tasks, thereby affecting prediction performance; 2) Random
masking of fMRI data ignores that the varying contributions of different
brain regions to different prediction tasks. To address these issues, we
propose Task-Aware Reconstruction Dynamic Representation Learning
(TARDRL). Different from the conventional sequential design, this ap-
proach sets up reconstruction and prediction tasks in parallel to learn
robust task-aware representations. Based on the parallelized framework,
we leverage attention maps from specific tasks to guide the fMRI time
series reconstruction, which in turn helps to learn task-aware fMRI rep-
resentations and improve disease prediction accuracy. Extensive experi-
ments demonstrate that our model outperforms state-of-the-art methods
on the ABIDE and ADNI datasets, with high interpretability. The codes
are available in the repository.

Keywords: Self-supervised learning · Functional magnetic resonance
imaging · Mask autoencoder · Disease diagnosis.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique to
reveal brain activities by measuring blood-oxygen-level-dependent (BOLD) sig-
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nals. Given its exceptional spatial resolution, a general practice in neuroimaging
communities is mapping the 4D voxel-wise signals into 2D ROI-wise signals with
a predefined 3D atlas [19,20,27]. Recently, researchers have embraced supervised
deep learning models, extracting information from brain activities and perform-
ing clinical prediction, such as disease diagnosis. These supervised methods can
be broadly classified into two categories, static and dynamic. Static methods
typically assume that the functional interactions between ROIs remain constant,
directly modeling the entire signals of ROIs or functional connectivity (FC) de-
rived from signals [11,10,9,14]. In contrast, dynamic approaches aim to explore
temporal variations and state transitions in the brain over time [6,12,3].

Nevertheless, these algorithms solely rely on supervised learning unable to
learn underlying genuine representations of fMRI, leading to sub-optimal perfor-
mances in prediction tasks. Even with reduced spatial resolution, neuroimaging
datasets still pose a challenge with their high dimensionality and small sample
size. In this context, predictive models tend to overfit, resulting in poor per-
formance and severely limiting the potential to obtain interpretable biomarkers
[21]. A self-supervised learning framework, mask autoencoder (MAE), has made
a splash in natural language processing (NLP) and computer vision (CV) by
enabling the training of generalizable large models [2,8]. Inspired by the concept
of MAE, one recent study [24] leverages the fMRI data to craft a reconstruction
task that masks out signals of randomly chosen ROIs at different time segments
and reconstructs them. The pre-trained model is then fine-tuned on a predic-
tion task, by reusing the same data samples along with their labels, leading to
improved performance over exclusively doing supervised learning.

However, we argue that directly applying this learning framework to fMRI
may result in sub-optimal results. Firstly, the reconstruction process is not task-
aware, meaning that representations learned from reconstruction are not aware
of the prediction task. Consequently, the learned representations may not be
fully leveraged to achieve optimal performance in the prediction task. Secondly,
the random masking for fMRI data may not be effective, ignoring a critical phe-
nomenon in neuroimaging that depending on different prediction tasks, brain
regions exhibit varying contributions. For instance, in autism spectrum disorder
(ASD) diagnosis, the attention scores in the sensory-motor network (SMN) are
highest, indicating that the regions in SMN play a critical role in ASD diagno-
sis [1]. Moreover, numerous studies have found that individuals with cognitive
impairment exhibit abnormalities in default mode network (DMN) [5,13]. Based
on these observations, we propose a hypothesis that learning representations
by reconstructing signals from important ROIs at different time segments will
yield improved performance in prediction tasks over reconstruction on randomly
chosen ROIs.

To this end, we propose TARDRL, Task-Aware Reconstruction Dynamic
Rpresentation Learning, a novel algorithm to improve prediction performance
with task-aware reconstruction. Different from the conventional sequential design
on the reconstruction and prediction, we set up the reconstruction and prediction
task in a parallel paradigm to learn robust task-aware representations (training
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Fig. 1. Overview of Task-Aware Reconstruction Dynamic Representation Learning.

TARDRL in a multi-task learning way). Based on the parallelized framework,
we adopt an attention-guided masking strategy to mask ROIs important to the
prediction task. Specifically, as shown in Fig.1, it uses the attention maps gener-
ated by STF during prediction and determines the set of ROIs to mask. During
reconstruction, signals of these ROIs are masked out and reconstructed, facil-
itating the reconstruction in a task-aware manner. Our extensive experiments
on the public ABIDE dataset and ADNI dataset show significant improvements
brought by TARDRL. Furthermore, our in-depth analysis validates the inter-
pretability of our model.

2 Method

Fig.1 illustrates the architecture of TARDRL, where tasks of prediction and
reconstruction are trained simultaneously. TARDRL comprises four major com-
ponents: an attention-guided mask layer only activated during reconstruction,
a shared encoder composed of spatial transformer (STF) and temporal trans-
former (TTF), a predictor for prediction tasks, and a decoder for task-aware
reconstruction.

2.1 Problem Definition

The ROI-wise signals X ∈ RN×M with a target class label y ∈ [0, . . . C − 1]
is extracted by a pre-defined atlas consisting of N ROIs, where M is the num-
ber of time points. The set of ROIs is denoted as V. Values of each ROI are
standardized across time. The matrix X is partitioned into T segments along
the temporal dimension via non-overlapping sliding windows of length τ , ob-
taining a set of time segments {Xt}Tt=1, where Xt ∈ RN×τ and M = τT .
In prediction, TARDRL takes fMRI segments as input and produces predic-
tion results. Additionally, it also generates the self-loop removed attention maps
{At}Tt=1 ,At ∈ RN×N , which are used to select important ROIs. In task-aware
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reconstruction, the activated mask layer masks out the signals of important ROIs
at different time segments, according to an attention-guided masking strategy

Ω, i.e.
(
{Xt}Tt=1 , {At}Tt=1

)
Ω−→

{
X̄t

}T

t=1
. Then, TARDRL outputs the recon-

structed data
{
X̂t

}T

t=1
based on masked fMRI signals.

2.2 TARDRL

Shared Encoder. The encoder is utilized as the backbone of TARDRL for
dynamic fMRI representation learning, which consists of STF and TTF. The
STF plays a crucial role in capturing functional interconnections between ROIs,
while the temporal dynamics are captured by the TTF. The transformer encoder
[22] is a key component of STF and TTF and has a multi-head-attention module
to model the spatial/temporal dependencies among ROIs/segments. Both STF
and TTF consist of multiple transformer blocks and position embeddings are
added for all tokens. Since both tasks share the parameters of this encoder, for
simplicity, we choose forward propagation during prediction as an example to
specify this encoder in this section. Our STF firstly embeds each fMRI segment
Xt by a linear projection, and then processes the resulting set via a series of
Transformer blocks. The output from transformer blocks forms a matrix Xs

t ∈
RN×dspat , where each row represent the features learned for each ROI at time
segment t. Subsequently, the average pooling layer aggregates all of the ROI-wise
vectors into a single vector st ∈ Rdspat . Finally, TTF maps the input sequence of
embeddings {st}Tt=1 generated by the STF to a sequence of latent representations

{ht}Tt=1 , ht ∈ Rdtemp .

Attention-guided Mask Layer. Considering that the importance of ROIs
to prediction tasks may vary across different time segments, we eschew random
reconstruction of fMRI data in favor of a strategy, Ω, which identifies and masks
important ROIs instead. Specifically, to define the notion of important ROIs,
we use attention maps generated during the forward propagation of STF in
prediction. The attention maps indicate the weights between brain regions and
to some extent reflect the importance of brain regions. For Xt, we compute the
final attention map At ∈ RN×N by averaging the attention maps generated
by each head of each layer of STF, while also removing the self-loop (setting
the values at diagonal positions to 0). We compute αt ∈ RN , where αt(j) =∑N

i=1 At(i,j)∑N
i=1

∑N
j=1 At(i,j)

for j = 1, 2, . . . , N . We quantify the importance of each ROI

at time t by its magnitude in αt. Then, the ROIs corresponding to the top k
values in αt are selected (k = ⌊δN⌋ with mask ratio δ ∈ (0, 1)) and masked out
for the purpose of reconstruction. However, as the same training data is fed at
each epoch, the model may consistently mask out the same set of ROIs for each
fMRI segment of samples throughout the entire training process, leading to sub-
optimal performance in reconstruction. To address it, we ensure that for all fMRI
segments of samples, at each epoch the model explores a random set of ROIs
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among the important ones. Specifically, we randomly sample ⌊µk⌋ ROIs among
k important ROIs, where µ is a hyperparameter and 0 < µ < 1. The masked

signals
{
X̄t

}T

t=1
can be derived from {Xt}Tt=1 and {At}Tt=1 via Ω. The masked

ROIs are replaced with a mask token which is a learnable dspat dimensional
vector that indicates the presence of a missing ROI signal.

Prediction and Reconstruction. The shared encoder operates on {Xt}Tt=1

and
{
X̄t

}T

t=1
and outputs corresponding sequences of latent representations

{ht}Tt=1 and
{
h̄t

}T

t=1
, respectively. In the prediction task, the predictor begins

by computing the overall fMRI representation hglobal by average pooling across

{ht}Tt=1, followed by passing hglobal through two fully connected layers to produce
the final prediction. The supervised Cross Entropy loss LCE is utilized for this
prediction task. In task-aware reconstruction, the decoder firstly adds positional

encoding to
{
h̄t

}T

t=1
, then processes them through multiple transformer blocks,

and finally reconstructs the fMRI segments
{
X̂t

}T

t=1
. The label for this task is

the raw input data {Xt}Tt=1. To ensure accurate reconstruction, we calculate the
Mean Square Error (MSE) for masked ROIs as follows:

Lmasked =
1

τT |Φt|

T∑
t=1

∑
i∈Φt

∥∥∥X̂t(i)−Xt(i)
∥∥∥2 , (1)

where Φt is the set of masked ROIs in the segment t, Xt(i) is the t-th fMRI

segment of the i-th ROI and X̂t(i) is the reconstructed one. Given that the
fMRI is a type of time-series data with a strong correlation across time, we also
consider the loss of reconstructing unmasked parts, as follows:

Lunmasked =
1

τT |V\Φt|

T∑
t=1

∑
i∈V\Φt

∥∥∥X̂t(i)−Xt(i)
∥∥∥2 . (2)

The combined reconstruction loss Lrec is a weighted sum of Lmasked and Lunmasked,
given by Lrec = λLmasked + (1− λ)Lunmasked. With LCE, the total loss becomes
LTotal = LCE+ηLrec. In this work, the λ and η are set to 0.75 and 1, respectively.

3 Experiments and Results

3.1 Experiments Settings

Datasets. We conduct experiments on two publicly available real-world fMRI
datasets. (a) ABIDE: This dataset consists of rs-fMRI data collected from 17
international sites. It contains fMRI data of 1009 subjects, with 516 (51.14%)
being Autism spectrum disorder (ASD) patients. We select the first 100 time
points for each subject. Considering the issue of multiple sites, a stratified sam-
pling strategy is used for train-validation-test data split [10]. (b) ADNI: This
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dataset comprises a total of 510 samples of data from 143 subjects, which can
be divided into 4 categories based on the degree of cognitive impairment (NC,
EMCI, LMCI, and AD). Each sample comprises 140 time points. In this paper,
we mainly focus on the binary classification task of NC vs. (EMCI & LMCI &
AD), with 370 (72.5%) samples from patients with cognitive impairment. For
ABIDE and ADNI, the region definitions are based on the Craddock 200 atlas
[4] and AAL 90 atlas [18], respectively.

Implementation. The non-overlapping sliding windows are set at a fixed size
of 20. For the ABIDE dataset, samples are split into 5 segments, and for ADNI,
they are split into 7 segments. The δ is set to 0.5, i.e., k is 100 and 45 for ABIDE
and ADNI, respectively. We randomly split 70% of the dataset for training, 10%
for validation, and use the remaining 20% as the test set. The model is trained
with 200 epochs by using an early stopping strategy. The epoch with the highest
AUROC performance on the validation set is used for performance comparison
on the test set. All reported performances are the average of 5 random runs on
the test set with the standard deviation. Additional settings are available in the
code repository.

Table 1. Comparisons of different methods on ABIDE and ADNI (mean plus/minus
std). The first and second-best results are bold and underlined, respectively. The
superscript ∗ denotes that models are trained in a non-fully supervised way.

Type Methods
ABIDE ADNI

Accuracy(%) AUROC Accuracy(%) AUROC

Static

MLP 58.55±4.08 0.6025±0.0326 62.45±2.79 0.6013±0.0292
BrainnetCNN 66.54±3.63 0.7399±0.0267 68.70±3.10 0.6424±0.0141
FBNETGNN 61.80±2.17 0.5943±0.0277 70.20±2.56 0.6949±0.0302

BCGCN 55.40±2.07 0.5647±0.0672 66.67±1.96 0.5541±0.0082
VanillaTF 67.72±1.22 0.7191±0.0170 68.24±2.90 0.5652±0.0138

BrainNetTF 69.52±1.58 0.7565±0.0449 71.00±3.80 0.7478±0.0543

Dynamic

RNN 60.80±1.79 0.6817±0.0221 68.12±3.58 0.7136±0.0227
STGCN 66.20±1.26 0.6974±0.0303 70.98±1.64 0.6436±0.0227
STAGIN 62.40±2.07 0.6221±0.0334 70.59±2.77 0.6738±0.0104
DBGSL 56.49±2.51 0.5731±0.0398 67.05±2.15 0.5698±0.0373

FDG-BrainMAE∗ 70.22±1.03 0.7269±0.0179 73.28±2.25 0.7608±0.0261
TARDRL∗ 71.83±3.3471.83±3.3471.83±3.34 0.7884±0.05490.7884±0.05490.7884±0.0549 76.08±2.9176.08±2.9176.08±2.91 0.8007±0.02550.8007±0.02550.8007±0.0255

3.2 Results

Comparisons with SOTA methods. We compare our method with state-of-
the-art deep learning-based methods, which can roughly be categorized into two
types: static-FC and dynamic-FC methods. More specifically, static-FC methods

https://github.com/zhaoyunxi/TARDRL
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are MLP, BrainNetCNN [11], FBNETGNN [9], BCGCN [14], BrainNetTF [10]
and its variant VanillaTF [10]. Dynamic-FC methods include RNN, STGCN [6],
STAGIN [12], and DBGSL [3], FDG-BrainMAE [24]. FDG-BrainMAE is firstly
pretrained in the reconstruction task with a variable mask ratio, and then fine-
tuned in the prediction task. The comparison result is shown in Table.1. We
can see that the self-supervised models achieve higher performance than models
trained in a supervised way, indicating that MAE empowers deep learning models
to acquire a genuine representation of fMRI. Among all the methods, TARDRL
performs best across all datasets. Specifically, for ABIDE dataset, TARDRL
outperforms the second-best baseline FDG-BrainMAE in terms of accuracy by
1.61% whereas on ADNI the FDG-BrainMAE lags with a considerable deficit of
2.8%. The superior performance of TARDRL is attributed to its attention-guided
masking strategy. Additionally, TARDRL, FDG-BrainMAE, and BrainNetTF
are transformer-based models, indicating the powerful representation learning
capabilities of the transformer.

Ablation. We report the ablation study results in Table 2, which further jus-
tifies the attention-guided mask strategy Ω and emphasizes the enhancement
through the incorporation of self-supervised learning (reconstruction). DRL uses
the same architecture as the prediction task in TARDRL and is trained through
supervised learning. TARDRL-Random disables the strategy Ω, thereby ran-
domly selecting ROIs to mask and reconstruct. Besides, TARDRL-Opp uses the
exact opposite strategy to Ω, which is to mask off low-attended ROIs. We observe
that DRL’s performances are comparatively inferior to all other self-supervised
learning methods except for TARDRL-Opp. Furthermore, removing the strat-
egy Ω or using the opposite of it, both come a degradation in performance. This
underscores that the significance of reconstructing signals from the important
ROIs, enabling the model to capture more information relevant to prediction
tasks.

Table 2. Ablation study of our proposed method (mean plus/minus std).

Methods
ABIDE ADNI

Accuracy(%) AUROC Accuracy(%) AUROC

DRL 65.39±1.51 0.6580±0.0286 68.06±1.31 0.6711±0.0121
TARDRL-Random 69.72±1.32 0.7472±0.0078 70.95±2.65 0.7240±0.0565
TARDRL-Opp 67.50±2.39 0.6732±0.0304 67.83±3.05 0.6951±0.0424

TARDRL 71.83±3.3471.83±3.3471.83±3.34 0.7884±0.05490.7884±0.05490.7884±0.0549 76.08±2.9176.08±2.9176.08±2.91 0.8007±0.02550.8007±0.02550.8007±0.0255

Interpretability. To identify the discriminative brain regions associated with
the end task, we create a brain region score vector using temporally ROI weights
z = 1

T

∑T
t=1 αt ∈ RN . The discriminative ROIs are determined by retaining all
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Fig. 2. The visualization of discriminative ROIs belonging to the top 2 functional
networks. The teal contour outlines the area of the corresponding functional network.

regions falling within the top 25% across all subjects in the test set, and they
are mapped with the definition of resting-state functional networks of Yeo et al
[26]. For each functional network, we compute the proportion of the cumulative
scores from its constituent discriminative ROIs, as shown in Table 3 and plot
the discriminative ROIs belonging to the top 2 functional networks in Fig.2. For
ABIDE, the SMN exhibits the highest contributions, which aligns with studies
revealing altered sensory and motor processing in autistics [7,15,16]. Addition-
ally, 24.37% of the highest scores are within the default mode network (DMN),
a key network that is consistently observed in studies on autism [17,23]. For
ADNI, 28.87% of the highest scores are attributed to the DMN, indicating its
essential role in detecting the fundamental decline of cognitive function, in line
with existing research [5,13]. Notably, the brain region located in the amygdala, a
component of the subcortical network (SCN), stands out with a remarkably high
score. This observation is aligned with neuroscience findings that the amygdala
is intricately related to cognitive function impairment [25].

Table 3. The proportion of the cumulative scores from each functional network’s
constituent discriminative ROIs.

DMN SMN VN FPN DAN VAN LN SCN

ABIDE 24.37% 27.51% 16.16% 11.70% 10.58% 6.11% 1.91% 1.66%
ADNI 28.87% 7.80% 4.11% 16.35% 0% 8.46% 14.16% 20.25%

4 Conclusion

In this paper, we propose TARDRL, a novel model designed to enhance predic-
tion performance through task-aware reconstruction from fMRI. In particular,
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we set up the reconstruction and prediction task in parallel to learn robust
task-aware representations. Besides, we design an attention-guided mask strat-
egy to identify ROIs important to end tasks. Experiments on two real-world
fMRI datasets demonstrate that our model achieves state-of-the-art results for
brain disease prediction. Besides, its interpretability makes it a valuable tool for
uncovering the mechanisms within the brain. We only consider disease detection
as our prediction task. In fact, TARDRL is a universal framework that can be
easily extended to more classification tasks such as emotion recognition and sex
classification, as well as regression tasks such as age prediction and behavioral
prediction. For future works, we will validate the feasibility of our model on
other prediction tasks with different datasets.
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