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Abstract. In Minimally Invasive Surgery (MIS), temporally consistent
depth estimation is necessary for accurate intraoperative surgical naviga-
tion and robotic control. Despite the plethora of stereo depth estimation
methods, estimating temporally consistent disparity is still challenging
due to scene and camera dynamics. The aim of this paper is to introduce
the StereoDiffusion framework for temporally consistent disparity esti-
mation. For the first time, a latent diffusion model is incorporated into
stereo depth estimation. Advancing existing depth estimation methods
based on diffusion models, StereoDiffusion uses prior knowledge to refine
disparity. Prior knowledge is generated using optical flow to warp the dis-
parity map of the previous frame and predict a reprojected disparity map
in the current frame to be refined. For efficient inference, fewer denoising
steps and an efficient denoising scheduler have been used. Extensive vali-
dation on MIS stereo datasets and comparison to state-of-the-art (SOTA)
methods show that StereoDiffusion achieves the best performance and
provides temporally consistent disparity estimation with high-fidelity de-
tails, despite having been trained on natural scenes only.
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1 Introduction

In MIS, the depth of surgical scenes is essential information for applications
including augmented reality, 3D tissue reconstruction, and surgical navigation.
Temporal consistency in depth estimation is required to enable reliable guid-
ance of surgical robots. Depth estimation using stereoscopic cameras has been
a popular approach in surgical vision. This involves matching pixels between
two views from a calibrated stereo camera and estimating the disparity between
them to measure depth. Recently, deep learning methods have been proposed for
stereo depth estimation [8][7][17][16]. They rely on specialized architectures and
task-specific loss functions, such as cost volumes, feature warps, or photometric
reprojection losses. Although these methods have achieved great performance,
estimating temporally consistent depth from video sequences is still challeng-
ing due to issues including the presence of dynamic objects, scene deformations,
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Fig. 1. Outline of the StereoDiffusion framework.

and camera motion which make feature matching difficult. The problem is fur-
ther compounded in scenes with uniform textures, changing illumination, and
occlusions, conditions particularly prevalent in MIS.

Denoising Diffusion Probabilistic Models (DDPMs) [5] have illustrated the
capability of generating high-fidelity images with remarkable details by learn-
ing to iteratively reverse images degraded with Gaussian noise to capture rich
knowledge about the visual information. A lot of attention has been given in
transferring the diffusion model into classical computer vision tasks [12][6][2]. In
the Marigold architecture [6], the diffusion model has been applied for monocular
depth estimation. The diffusion model predicts relative scene depth (based on
random noise and conditional RGB images), and a global scale is then applied
to transform the relative depth to actual depth values. Although this work can
generate detailed relative depth maps, it is quite sensitive to the type of the scene
and struggles to recover actual depth in scenarios such as surgical scenes due to
the lack of training data. Therefore, our aim is to overcome the above limitations
and integrate diffusion models into the stereo depth estimation pipeline.In this
paper, we introduce the StereoDiffusion framework for stereo depth estimation.
For the first time, a latent diffusion model is used for disparity refinement. Ad-
vancing existing depth estimation methods based on diffusion models, in our
work instead of treating the diffusion model as a regression model, we use prior
knowledge to refine disparity. To enable real-time disparity inference, fewer de-
noising steps and an efficient denoising scheduler have been used. The prior
knowledge fed to the diffusion model is generated using optical flow to warp the
disparity map of the previous frame and predict a reprojected disparity map in
the current frame which requires refinement due to flaws or imperfections caused
by the scene dynamics. Performance evaluation on MIS data and comparison to
SOTA methods verifies the robustness, temporal consistency and generalisability
of StereoDiffusion, despite having been trained on natural scenes only.
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2 Methods

The StereoDiffusion framework proposed in this work for temporally consistent
disparity estimation is composed of the following two main parts, (1) Dispar-
ity and optical flow estimation given a sequence of stereo images (2) Disparity
refinement using a latent diffusion model.

2.1 Disparity and Optical Flow Estimation

The first part of our framework focuses on the estimation of disparity and optical
flow as shown in Fig. 1. The aim is to warp the disparity estimated in the
previous frame with the optical flow between the previous and the current frames
to generate the disparity map at the current frame. Given the left and right
camera images Lts−1 and Rts−1, respectively at time step ts − 1, the disparity
module predicts the disparity map dts−1. Given the image pair Lts−1 and Lts,
the optical flow module predicts the optical flow map from Lts−1 to Lts. Then
dts−1 is warped with the optical flow to generate the reprojected disparity d̂ts.
This process is iteratively conducted frame by frame. In this work, we use the
off-the-shelf pre-trained RAFT models [8][15] for both disparity and optical flow
estimation. However, any other disparity and optical flow estimation model can
be used.

2.2 Disparity Refinement with Latent Diffusion Model

The reprojected disparity d̂ts contains flaws or imperfections caused by the scene
dynamics and errors in the optical flow. Hence, the second part of our framework
focuses on refining the disparity d̂ts using a latent diffusion model to improve
both its temporal consistency and accuracy.

For this purpose, we approach the disparity estimation as a conditional de-
noising diffusion generation task. In this work, the Stable Diffusion V2 [10] is
used as our latent diffusion model because of its memory and time efficiency.
Contrary to diffusion models operating directly on data [12], latent diffusion
models perform diffusion in a compressed latent space for computational effi-
ciency and high-resolution image generation. This latent space is established via
a variational autoencoder (VAE) which extracts a latent representation which
compresses the original data.

The above latent diffusion model is fine-tuned with the conditional distribu-
tion D(z(d)) | z(x)) over disparity d ∈ RW×H , where the condition x ∈ RW×H×3

is an RGB image which in our work is the current left image Lts. The latent
representation of a disparity map and of a conditioning image is estimated as
z(d) and z(x), respectively. By applying the same VAE to both the disparity
map and the conditioning image, we ensure that their latent representations are
well-aligned for further processing. Fig. 2 illustrates the training processes.

The denoising pipeline consists of the forward and reverse processes. In the
forward process, Gaussian noise is incrementally added to the latent representa-

tion of the disparity map at levels t ∈ {1, ..., T} to generate noisy samples z
(d)
t ,
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Fig. 2. Training Phase of the Latent Diffusion Model.

as:
z
(d)
t =

√
αtz

(d)
0 +

√
1− αtϵ (1)

where, ϵ ∼ N (0, I) and αt :=
∏t

s=1(1−βs) where β has fixed value from the set
{β1, ..., βT }. In the reverse process, the conditional denoising model ϵθ(·), with
parameters θ, iteratively removes noise from z

(d)
t to recover z

(d)
t−1.

The denoising model ϵθ(·) in this work is the U-Net. It is trained by selecting
a pair (d,x) from the training dataset, applying to disparity d noise of a random
level t, computing the noise estimate ϵ̂ = ϵθ(dt,x, t), and learning to minimize
the denoising diffusion objective function L, defined as:

L = Ed0,ϵ∼N (0,I),t∼U(T ) ∥ϵ− ϵ̂∥22 . (2)

During inference, the refined disparity d̂ (corresponding to d0) is reconstructed
from the reprojected disparity map, by iteratively applying the trained denoiser

ϵθ(z
(d)
t ,x, t).

Disparity Normalization: To guarantee the generalizability of the diffusion
model to different types of scenes, we normalize every reprojected disparity map
prior to feeding it to the diffusion model. We use min-max normalization and
adjust the disparity values to the range [−1, 1], as:

dnorm =

(
d− dmin

dmax − dmin
− 0.5

)
× 2, (3)

where, d is the original disparity map and dnorm is the normalized one. This dis-
parity range adjustment fits the conventional data range of the pretrained VAE
for better training. Moreover, this normalization makes the model focus on the
relative disparity values rather than predict disparity values directly. This helps
the diffusion model refine the reprojected disparity map based on its disparity
data distribution and can be transferred into other scenes, ensuring generalizabil-
ity across different scenarios. In addition, the min-max normalisation is superior
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Fig. 3. Inference Phase of the Latent Diffusion Model.

than normalizing the disparity by the image width as we found that the latter
makes the final prediction unstable and with noisy patches during inference.

2.3 Inference of StereoDiffusion Model

The inference pipeline for the disparity refinement is illustrated in Fig. 3. Similar
to the training phase, the disparities are normalised following Eq. (3). Given
the reprojected disparity map and the conditional RGB image, the frozen VAE
first converts the two inputs into their latent representations. Then, Gaussian
noise is added to the latent representation of the reprojected disparity map. The
denoiser is then applied iteratively to estimate the refined disparity map in the
latent space. To recover the disparity from the latent space, the frozen VAE
decoder D is used to reconstruct the refined disparity d̂ = D(z(d)). Since the
VAE used to establish the latent space of the diffusion model, is designed for
3-channel data input, we replicate the disparity map into the 3 channels at the
encoder and decoder of the VAE to satisfy the data format. Hence, the refined
disparity map is estimated as the average of the three channels recovered by
the VAE decoder. To accelerate inference, we apply the DDIM [14] scheduler
to perform non-Markovian sampling with re-spaced steps. Also, we use only 10
denoising steps which as shown in our results, it achieves high accuracy.

2.4 Implementation

The Stable Diffusion v2 [10] is used with pre-trained model weight setup with a
v-objective [11]. The text conditioning module is disabled to save memory usage.
We use the DDPM noise scheduler [5] with 1000 diffusion steps for training and
the DDIM scheduler [14] with 10 sampling steps for fast inference. We train
with a batch size of 4 on 2 Nvidia RTX A5000 GPUs with accumulative steps
set equal to 8. Half-precision training is used to save memory usage and the
Adam optimizer with a learning rate of 3 · 10−5.



6 H. Xu et al.

3 Experiments and Results

RGB

RAFT-
Stereo

StereoDiffusion
(Ours)

STTR

DLNR

Fig. 4. Temporal Consistency Comparison on the Hamlyn Dataset.

Table 1. Validation on the SCARED dataset. The best results are highlighted in bold.

Method
SCARED 2019 Test SCARED Small

Testdata 1 Testdata 2 Keyframes
EPE (px) D3 (%) MAE (mm) EPE D3 MAE EPE 3 px MAE

DLNR [17] 4.14 33.91 3.98 5.32 36.37 4.68 1.45 4.12 1.32
STTR [7] 6.52 39.96 4.14 8.23 40.13 5.91 6.03 9.52 11.31

RAFT-Stereo [8] 3.89 36.91 3.74 4.22 38.52 4.28 1.16 4.59 1.01

StereoDiffusion 3.22 25.22 3.13 3.67 27.34 3.67 1.05 3.55 1.00

3.1 Datasets for taining and testing

In our framework, only the diffusion model is trainable while all the other com-
ponents are pretrained. We train the diffusion model in our framework on the
Sceneflow [9] and Middlebury [4] datasets. The Sceneflow dataset consists of
three subsets namely, FlyingThings3D, Driving and Monkaa. We use the final-
pass set of Sceneflow which contains 36k images of dynamic scenes with motion
blur and defocus blur. The diffusion model is then finetuned on the 23 Middle-
bury training images to enable it to generate images with more realistic details.

For testing, three different datasets have been used namely, the SCARED,
STIR and Hamlyn datasets. The SCARED dataset [1] includes 7 training and 2
test subsets. We use the 2 test datasets which contain 8 video clips in total. The
videos have a resolution of 1280x1024. The STIR dataset [13] includes 566 stereo
video clips from both in vivo and ex vivo settings, with more than 3,000 sparse
points in the whole dataset, visible in the infrared spectrum. The centre point



Title Suppressed Due to Excessive Length 7

RGB

RAFT-
Stereo

StereoDiffusion
(Ours)

DLNR

STTR

Fig. 5. Temporal Consistency Comparison on the SCARED dataset.

of the labeled bounding boxes on each pair of stereo images is used to estimate
ground truth disparity for our evaluation. From the Hamlyn dataset [3], we used
the partial nephrectomy video for qualitative validation as there is no ground
truth.

3.2 Performance evaluation study

We compare the performance of StereoDiffusion with two state-of-the-art dis-
parity models namely, RAFT-stereo [8], STTR [7] and DLNR [17] on the test
datasets. The performance is evaluated in terms of the average End-Point-Error
(EPE) of disparity, the percent of pixels with EPE greater than 3 pixels (D3)
and the Mean Absolute Error (MAE) of depth on SCARED. And we use EPE,
D3 and Intersection Over Union (IOU) to evaluate disparity results on STIR
to estimate the accuracy in matching bounding boxes. Temporal consistency is
validated only qualitatively due to the lack of ground truth optical flow. All the
models have been trained on the natural scene datasets only and tested on the
medical scene data, without finetuning on the medical datasets.

Tables 1 and 2, show the quantitative evaluation of our model compared with
the SOTA stereo depth estimation models. As it can be seen, StereoDiffusion
outperforms the other models in both benchmarks, especially in terms of the
D3 metric, which verifies that it predicts more accurate disparity maps, with
less pixels having disparity error over 3 pixels. Validation only on the keyframes
of the SCARED dataset with accurate ground truth shows that StereoDiffusion
not only has superior performance but it also achieves 1mm accuracy.
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Table 2. Validation on the STIR dataset. Best results are highlighted in bold.

Method
Disparity Evaluation Bounding Box Evaluation
EPE (px) ↓ D3 (%) ↓ IOU ↑

DLNR [17] 2.98 22.54 0.823
STTR [7] 3.48 24.03 0.818

RAFT-Stereo [8] 2.61 23.12 0.832

StereoDiffusion 2.15 15.84 0.855

Fig. 4 and Fig. 5 show the disparity maps extracted by the compared models
on a short sequence of consecutive frames from the Hamlyn and the SCARED
datasets, respectively. The RGB refer to the left RGB images to save space.

In the disparity map generated by DLNR in Fig. 4 it is not possible to
distinguish different scene structures due to the outliers observed at the top of
the map. STTR generates disparity by processing the images in patches. Hence,
it misses fine details as can be noticed in Fig. 4 along the edges of the surgical
tools and the border between the tissue and the background. Also, it generates
uneven disparity with holes and gaps. RAFT and DLNR can better preserve
details on the different structures present in the surgical scene compared to
STTR. However, the temporal consistency of all these models is poor as the range
of the disparity values varies significantly across the image sequence, creating
flickering results. StereoDiffusion generates more precise and sharper disparity
maps while the distribution of the predicted disparity values remains consistent.
This verifies the ability of our method to generate temporally consistent disparity
maps. In Fig. 4, the light reflection creates a bright line close to the edge of the
shaft of the left-hand needle driver. RAFT treats it as an independent object and
estimates along this line disparities which are significantly different compared
to those of the main body of the needle driver. StereoDiffusion manages to
generate smooth disparities along the shaft of the surgical tool. Video results of
the above sequences have been provided in the Supplemental material. Despite
not training on surgical scenes, StereoDiffusion consistently outperformes SOTA
disparity estimation models by generating sharper and temporally consistent
disparity maps, verifying its generalizability.

4 Conclusion

In this paper, we have proposed the StereoDiffusion framework which uses a
latent diffusion model with prior knowledge for disparity refinement with im-
proved temporal consistency. Compared with previous work which utilizes diffu-
sion model for direct depth estimation, we combine both stereo depth estimation
and diffusion model to provide a more generalizable and robust framework. The
experimental results verify that although the model has been trained on natural
scene data only, it can still estimate temporally consistent disparity of surgical
scenes without any finetuning. Our future work will focus on transferring our
proposed framework to other computer vision tasks such as image segmentation.
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