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Abstract. Generative modeling seeks to approximate the statistical
properties of real data, enabling synthesis of new data that closely resem-
bles the original distribution. Generative Adversarial Networks (GANs)
and Denoising Diffusion Probabilistic Models (DDPMs) represent sig-
nificant advancements in generative modeling, drawing inspiration from
game theory and thermodynamics, respectively. Nevertheless, the explo-
ration of generative modeling through the lens of biological evolution
remains largely untapped. In this paper, we introduce a novel family
of models termed Generative Cellular Automata (GeCA), inspired by
the evolution of an organism from a single cell. GeCAs are evaluated as
an effective augmentation tool for retinal disease classification across
two imaging modalities: Fundus and Optical Coherence Tomography
(OCT). In the context of OCT imaging, where data is scarce and the
distribution of classes is inherently skewed, GeCA significantly boosts
the performance of 11 different ophthalmological conditions, achieving
a 12% increase in the average F1 score compared to conventional base-
lines. GeCAs outperform both diffusion methods that incorporate UNet
or state-of-the art variants with transformer-based denoising models, un-
der similar parameter constraints. Code is available at: https://github.
com/xmed-lab/GeCA.
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1 Introduction

Retinal diseases rank among the leading causes of vision disabilities and blind-
ness if they remain untreated. Medical imaging modalities such as fundus pho-
tography and Optical Coherence Tomography (OCT) are widely used for di-
agnosing retinal conditions. OCT, offering a comprehensive view of the retinal
⋆ Correspondence: eexmli@ust.hk
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Fig. 1: Selected synthetic images from our GeCA trained on Fundus and OCT.

layers compared to the fundus, is the preferred modality for diagnosing specific
diseases such as Diabetic Retinopathy (DR) and Age-related Macular Degener-
ation (AMD) [17]. Recently, deep learning approaches have been introduced for
retinal disease screening, utilizing both fundus [15] and OCT [30]. Nevertheless,
the development of these approaches is significantly hindered by the scarcity of
publicly accessible datasets, particularly for OCT. Despite its advantages, OCT
imaging is more costly and less employed than fundus photography, leading to
a scarcity of OCT datasets. Therefore, it becomes crucial to develop a novel
solution for retinal disease diagnosis using OCT imaging, especially considering
its scarcity as well as its skewed disease distribution.

Expanding datasets with synthetic images through generative modeling has
been shown to significantly enhance diagnostic accuracy in medical imaging, par-
ticularly in scenarios where data is scarce and class distribution is skewed [6,32,20].
Current generative models primarily utilize diffusion-based optimization [8], rely-
ing heavily on architectures such as UNet [24,6] and transformers [3,23]. Despite
their effectiveness, these models require a vast number of parameters, training
on large-scale datasets, and often segmentation priors [36]. These inefficiencies
present considerable challenges, particularly in medical imaging, where datasets,
annotations, and computational resources are often scarce. Inspired by biological
processes, Neural Cellular Automata (NCA) [18] emerge as a promising alterna-
tive, offering advancements in diverse tasks with fewer parameters [27,21,13,11].
While NCA have shown promise in enabling medical image segmentation tasks
under resource-constrained settings [13,11], their application in generative tasks
results in low-resolution outputs [22,26,12] and lacks comprehensive performance
comparisons, particularly in the evaluation of downstream tasks, where NCA’s
efficiency for image generation remains an unresolved challenge.
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Fig. 2: GeCA overall framework.

To address these challenges, we propose a novel approach for incorporating
NCA in image generation by integrating diffusion objectives specifically devised
for NCA’s unique structure. Operating in the latent space, scaling Neural Cellu-
lar Automata (NCA) with transformers, and introducing a novel Gene Heredity
guidance method for enhanced reverse sampling, we present Generative Cellular
Automata (GeCA). GeCA surpasses the state-of-the-art Diffusion Transform-
ers (DiTs) [23] in image generation across two modalities: Fundus and OCT.
By extending the application of GeCA to dataset expansion, we augment the
scarce OCT dataset with synthetic images, resulting in a 12% improvement in
the average F1-score for multi-label retinal disease classification compared to
conventional baselines. Our contributions can be summarized as:

– We introduce Generative Cellular Automata (GeCA), a novel model that in-
tegrates Neural Cellular Automata (NCA) with diffusion objectives, tailored
specifically for NCA’s unique structure.

– We propose Gene Heredity Guidance (GHG) to improve GeCA’s image sam-
pling. GHG enabled GeCA to surpass SOTA DiT in image generation and
retinal disease classification with half of DiT’s parameters.

– Through a detailed examination of diffusion models in OCT image gener-
ation, we demonstrate their capability to augment training datasets with
synthetic images, boosting OCT’s multi-label retinal disease classification.

2 Generative Cellular Automata

2.1 An Organism Starts With a Single Pix-Cell

NCA [18] model an input image with height H and width W as a grid comprising
H × W entities, which we refer to as pix-cells in our methodology. Each pix-
cell represents a time-dependent state space representation, facilitating dynamic
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evolution akin to cellular processes in an organism, i.e., image. We parameterize
the state of each pix-cell at step m as a vector of scalars, defined as:

pix-cellm = {Cin, Cγ , Cout, Ch}, (1)

where Cin denotes the input values of the image (e.g., one scalar for grayscale
and three for RGB input images), Cγ represents a positional encoding, defined
by a continuous and smooth sinusoidal function facilitating spatial awareness
within the grid [5,29], Cout refers to the output values indicating a pix-cells’s
targeted state (equivalent to Cin in dimension), and Ch represents the hidden
state variables reflecting the pix-cell ’s internal state during evolution.

To evolve a single pix-cell to a more complex organism—an image, we follow
traditional NCA conventional that adopts a stochastic rule [18]. This means a
pix-cell is updated at step m randomly with a probability p, reflecting the non-
simultaneous nature of cellular updates in self-organizing organisms. The update
of a pix-cell focuses on updating only Ch and Cout, given that Cin and Cγ are
constant. This process, illustrated as GeCA step in Fig. 2, is defined as:

pix-cellm+1 = Θ(pix-cellm,Neighborhood8) + {0, 0, Cout
m , Ch

m} (2)

Departing from the hierarchical modeling with M layers in the SOTA Dif-
fusion Transformer (DiT), we parameterize Θ as a single DiT block featuring
a localized self-attention mechanism, specifically computed across the 8 closest
neighboring pix-cells. The localized attention strategy, implemented similarly to
those in localized transformer-based methods [33,2,27], allows each pix-cell to
grow independently by applying Eq. (2) for M times, using the same Θ. GeCA’s
approach shifts the focus in image generation towards local spatial interactions,
moving away from the global context reliance observed in traditional models
such as UNet [25] and standard transformers [29]. Nevertheless, GeCA achieves
global coherence by accumulating long-term state-space representation via Ch,
aligning with the foundational concepts documented in NCA [18,26,27,11,13,21],
Mamba [7], universal transformers [4], and MLP-mixers [28].

2.2 Cellular Diffusion: Evolving Cells into Organisms

To train our model parameters Θ, we utilize the well-established diffusion process
first introduced in [8] with specific modifications in the forward and reverse steps.
During the forward diffusion process, we initialize Cout and Ch with zeros, except
for a single pix-cell located at the center of the H ×W grid, which is initialized
with random scalars to serve as the starting point for the cellular process. Cγ

is initialized with a sinusoidal positional encoding. Cin can be described in the
forward diffusion process on a per pix-cell level as:

Cin
t =

√
αtC

in
0 +

√
1− αtϵ, ϵ ∼ N (0, I), (3)

where ϵ, following a normal distribution, represents the noise added at each step,
and αt, which is part of a pre-defined variance schedule, takes values within the
interval (0, 1) for each time step t = 1 to T .
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We then perform M cellular updates with Eq. (2) to developing Cout
t and Ch

t .
When T → ∞, Cin

T becomes equivalent to an isotropic Gaussian distribution [8].
Thus, the optimization process is simplified from a theoretical formulation to
predict the noise ϵ from a pix-cell as:

L = Et∼[1,T ],C0,t

[
∥ϵ− Cout

t ∥2
]

(4)

This formulation allows reverse sampling from a Gaussian noise Cin
T ∼ N (0, I).

Additionally, it allows adjusting M during sampling to control the intensity of
generation, from undergrowth to overgrowth; see Fig. 6 in the appendix

2.3 Improved Reverse Sampling via Gene Heredity

Representing an input image with pix-cells, a time-dependent state space rep-
resentation, GeCA preserves long-term information within its internal hidden
states, Ch, analogous to genetic material. Thus, we propose leveraging Ch at
time t+1 to guide the reverse generation of time t, mirroring the inheritance of
genetic traits. Specifically, we modify each step in the reverse process to initiate
the pix-cell hidden states, Ch, as:

Ch
t =

{
ϵ ∼ N (0, I) if t = T and grid-center pix-cell ,
Ch

t+1 otherwise.
(5)

Simultaneously, Cout, for the grid-center pix-cell at each timestep is defined as:

Cout
t ∼ N (0, I) (6)

Our proposed process, termed Gene Heredity Guidance (GHG), sets the stage
for denoising Cin

t and refining Ch
t from a plausible starting point. Following

GHG, the denoising process to sample a synthetic pix-cell, Cin
0 , adheres to tra-

ditional diffusion steps till t → 0 as:

Cin
t−1 =

1
√
αt

(
Cin

t − 1− αt√
1− αt−1

Cout
t

)
, (7)

Note that without our proposed GHG, the application of NCA in generative
modeling is suboptimal (See Fig. 5).

2.4 Retinal Disease Classification

Classifying retinal disease from OCT images presents significant challenges
due to data scarcity and skewed class distributions. In light of these challenges,
we leverage generative modeling to augment the dataset effectively, a strategy
proven to significantly enhance downstream classification tasks compared to con-
ventional augmentation techniques [6,35].

Following [35], we synthesize a training set expanded five-fold, mirroring the
original training set’s distribution. Given the original dataset’s class distribution
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Fig. 3: Results summary on a public fundus dataset.

porig(y), with y representing the dataset labels and Norig as the original dataset
size, the objective is to expand the dataset five-fold to Naug = 5 ×Norig, while
preserving porig(y). This is achieved by ensuring that the count of each label y
in the augmented dataset, Countaug(y), is five times its original count as:

paug(y) = porig(y), where Countaug(y) = 5× Countorig(y) (8)

By preserving the original label distribution porig(y) in the augmented dataset,
we maintain the dataset’s inherent distribution to avoid any potential bias.

3 Experiments

Datasets. We evaluate our model using two different datasets: OCT and Fun-
dus. The multi-label OCT dataset, OCT-ML, is an in-house dataset consisting
of 1435 samples from 369 eyes of 203 patients considering multiple diseases in-
cluding normal, dry age-related macular degeneration (dAMD), wet age-related
macular degeneration (wAMD), diabetic retinopathy (DR), central serous chori-
oretinopathy (CSC), pigment epithelial detachment (PED), macular epiretinal
membrane (MEM), fluid (FLD), exudation (EXU), choroid neovascularization
(CNV), and retinal vascular occlusion (RVO). Additionally, we provide the code
necessary for both the generation process and the classification task, applied to
DeepDRiD [16], a publicly available fundus imaging dataset encompassing five
grading classes and follow the MedMnist split [31] (1,080 train, 120 val, 400 test).
For the OCT-ML dataset, we adopt a five-fold cross-validation.
Baselines. Compared to previous NCA approaches [22,12] which exhibited sub-
optimal performance and did not compare with SOTA generative benchmarks,
we compare our GeCA against DiT [23], state-of-the-art diffusion transformers,
as well as the U-Net-based diffusion models from LDM [24], modifying the la-
bel embedding to support multi-label OCT generation. Training and inference
for all baseline models adhere to the same hyperparameters with Classifier Free
Guidance (CFG) [9] to facilitate conditional generation on downstream tasks.
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Table 1: Quantitative image quality evaluation for two datasets. KID values are
expressed in terms of 10−3 for each model. All baselines are trained and evaluated
with classifier free guidance (CFG) [9] and T = 250.
Method # Param. (↓) Fundus Dataset OCT Dataset

KID (↓) LPIPS (↑) GG (> 0) KID (↓) LPIPS (↑) GG (> 0)
LDM-B [24] 17.3 M 11.64±2.1 0.37±0.09 −10.67 64.5±10 0.39±0.16 -2.31
DiT-S [23] 32.7 M 12.45±2.8 0.31±0.09 −14.55 62.3±5.9 0.37±0.14 -0.44
GeCA-S (ours) 13.3 M 7.42±1.6 0.39±0.11 2.02 49.1±8.0 0.53±0.16 0.34

LDM-M GeCA-XS LDM-B DiT-S GeCA-S (ours)

Normal

Severe
NPDR

Normal

FLD

Fig. 4: Qualitative examples for the Fundus and OCT datasets are provided;
images are downsampled for visualization purposes, with high-resolution versions
available in the supplementary material.

For the DiT, we report DiT-S, with an optimal patch size of 2. Given our GeCA
trains a single DiT layer, we take M = 12 equivalent to the number of layers in
DiT-S; See Appendix for details.
Implementation Details. For all methods, generation is conducted in the
latent space akin to LDM [24] with an output resolution of 256x256. Training
acceleration for all methods is done with mixed-precision. We utilize a batch
size of 128 and train all models for 14,000 epochs until convergence. For the
downstream classification task, ResNet-34 is utilized with Adam optimizer.
Generative Modeling Evaluation. Tab. 1 presents the quantitative results to
assess the quality of the generated samples. Noting the limitations of the Fréchet
Inception Distance (FID) score observed in prior works [19,10], we employ the
Kernel Inception Distance (KID) for fidelity due to its sensitivity to dataset
size [10,1]. Additionally, we report the the perceptual LPIPS diversity [34] to
measure the image variability. Finally, we present the generalization gap (GG)
as quantified by the Feature Likelihood Divergence (FLD) [10], encapsulating
the triplet novelty (different from the training samples), fidelity, and diversity of
the synthetic samples. Overall, our GeCA demonstrates superior image quality,
both quantitatively and qualitatively, as depicted in Fig. 4. We show samples
from the high-resolution GeCA model in Fig. 1 and the appendix.
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Table 2: Performance results on our in-house multi-label OCT dataset, employ-
ing a five-fold cross-validation approach at the patient level. Each fold trains a
separate diffusion model to generate synthetic data for the downstream classi-
fication task. All downstream experiments use ResNet34 as the backbone. We
follow prior works [30,14] for eye-level performance evaluation, considering the
multiple scans per eye in our dataset. The F1sen/pe quantifies the harmonic mean
of Sensitivity (Sen.) and Specificity (Spe.). (****) denote statistical significance
with a p-value less than 0.0001. All reported metrics are macro-averaged.
Synthetic Data Sen. Spe. AUC F1 F1sen/pe mAP p <

Baseline (Geometric Aug) 54.66±1.53 96.50±0.16 92.47±0.85 55.47±0.99 60.80±1.49 68.85±1.41 -
Baseline w/o Aug. 48.34±1.45 96.39±0.20 89.99±0.82 54.56±1.77 50.07±0.89 64.58±1.19 **
LDM-B [24] 58.83±1.90 96.12±0.29 91.22±0.74 59.65±3.19 67.74±2.97 70.49±2.64 **
DiT-S [23] 59.25±4.54 95.87±0.37 91.80±1.74 59.11±2.57 67.13±4.87 69.89±3.34 ***
GeCA-S (ours) 59.95±5.32 96.38±0.40 92.74±2.21 61.62±3.93 68.38±4.61 73.28±5.58 ****
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Fig. 5: Ablation of the proposed Gene Heredity Guidance (GHG).

Retinal Disease Classification. Tab. 2 presents the 11 multi-label classifi-
cation results on OCT-ML expanded by synthetic data via generative mod-
eling discussed in Sec. 2.4. All generative models remarkably improved the
performance across various metrics. Notably, expanding the training dataset
with our proposed GeCA achieved the highest mean average precision (mAP
of 73.28%). GeCA significantly surpass the baseline with geometric augmenta-
tion by 4.43% in mAP and 7.58% in the harmonic mean of Sensitivity and
Specificity (F1sen/pe). Furthermore, in terms of the traditional F1-score, which
evaluates precision and recall, GeCA achieved a significant 6.15% gain over the
baseline. Despite being significantly more parameter-efficient, requiring only 40%
of the parameters compared to the SOTA DiT-S [23], GeCA still manages to sur-
pass it by 3.39% in mAP. Furthermore, GeCA not only exceeds the performance
of the leading baseline, LDM-B [24], by 2.79% in mAP, but it also secures the
highest degree of statistical significance (****). These results highlight GeCA’s
very promising performance in the realm of generative modeling.
GHG Ablation. Fig. 5 reveals the impact of Gene Heredity Guidance (GHG),
introduced in Sec. 2.3, on two datasets. On the Fundus dataset, without in-
heritance, the model yields a moderate KID of 19.37, lacking the benefits of
long-range dependencies. Inheriting Cout alone drastically impairs performance,
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spiking the KID to 44.22, suggesting that inheriting Cout propagates noise. Con-
versely, inheriting both Cout and hidden states Ch partially mitigates this effect,
reducing the KID to 12.84. Optimal performance is observed when only Ch is
inherited, achieving the lowest KID of 7.42. In contrast to Cout, whose pri-
mary function is to predict noise, inheriting Ch facilitates the propagation of
long-range dependencies, capturing the global context across the image.

4 Conclusion

We present GeCA, an innovative model outperforming current image genera-
tion benchmarks through neural cellular automata, demonstrated on challeng-
ing multi-label OCT classification. Future directions include broadening GeCA’s
validation across various domains and exploiting its unique capabilities, such as
channel dimension selective sampling and temporal scheduling of its updates.
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