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Abstract. Depth estimation plays a crucial role in various tasks within
endoscopic surgery, including navigation, surface reconstruction, and aug-
mented reality visualization. Despite the significant achievements of foun-
dation models in vision tasks, including depth estimation, their direct ap-
plication to the medical domain often results in suboptimal performance.
This highlights the need for efficient adaptation methods to adapt these
models to endoscopic depth estimation. We propose Endoscopic Depth
Any Camera (EndoDAC) which is an efficient self-supervised depth esti-
mation framework that adapts foundation models to endoscopic scenes.
Specifically, we develop the Dynamic Vector-Based Low-Rank Adapta-
tion (DV-LoRA) and employ Convolutional Neck blocks to tailor the
foundational model to the surgical domain, utilizing remarkably few
trainable parameters. Given that camera information is not always acces-
sible, we also introduce a self-supervised adaptation strategy that esti-
mates camera intrinsics using the pose encoder. Our framework is capable
of being trained solely on monocular surgical videos from any camera,
ensuring minimal training costs. Experiments demonstrate that our ap-
proach obtains superior performance even with fewer training epochs
and unaware of the ground truth camera intrinsics. Code is available
at https://github.com/BeileiCui/EndoDAC.
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1 Introduction

Depth estimation holds immense value in minimally invasive endoscopic surgery,
enabling enhanced navigation, accurate surface reconstruction, and immersive
augmented reality experiences [5, 32]. However, due to complex internal envi-
ronments, low lighting conditions, and sparse feature textures, accurate sur-
gical depth estimation remains a challenging task [22]. Traditional multi-view
geometry-based methods such as structure from motion (SfM) [20] and simulta-
neous localization and mapping (SLAM) [10] perform poorly in surgical scenar-
ios with low lighting and lack of texture. Deep learning method has been widely
proposed for depth estimation in natural environments [2, 24]. Due to security,
privacy, and professionalism issues, obtaining large-scale, precise surgical ground
truth depth information for supervised training is challenging. Researchers there-
fore have been focusing on the self-supervised learning (SSL) method where the
depths are constrained by the geometric relationship between video frames [1,17].
Shao et al. [22] utilize appearance flow to resolve inconsistent lighting problems
in endoscopic depth estimation. Yang et al. [29] designed a lightweight framework
combining CNN and Transformers to compress the model parameters effectively.

Recently, foundation models have attracted extremely increasing attention
for their amazing performances in various tasks [13,14,16]. Leveraging the large
amount of parameters and training data with integrated training methods, foun-
dation models can learn highly generalizable information achieving state-of-
the-art performance in multiple downstream tasks involving vision, text, and
multi-modal inputs [6]. However, foundation models may experience significant
performance degradation when applied to specific domains such as endoscopic
scenes [25]. Training a medical-specific foundational model from scratch presents
numerous challenges due to the scarcity of annotated data in the medical domain
and the inadequate availability of computational resources. Hence, there has been
considerable discourse on the adaptation of existing foundational models to var-
ious sub-domains, optimizing the utilization of pre-trained model parameters,
and fine-tuning foundation models for specific application scenarios [4, 27].

The majority of the current adaptation of foundation models to the med-
ical domain focuses on medical image segmentation and detection instead of
regression tasks like depth estimation and annotated prompts are still required
for the fine-tuning process [31]. To this end, we make the effort to explore effi-
ciently adapting foundation models to surgical self-supervised depth estimation
where only surgical videos are required for fine-tuning. To be specific, we design
Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) which requires only
a small number of parameters to be fine-tuned specifically for medical scenar-
ios. We also design a Convolution Neck block to enhance the model’s ability to
capture high-frequency information thus facilitating more accurate depth esti-
mation. Meanwhile, to improve the universality of adaptation based on the fact
that endoscopic camera intrinsic parameters are not always given, we add a de-
code head to estimate the camera’s intrinsic parameters simultaneously leading
our method can be applied with only surgical videos from any unknown cameras.

Our key contributions can be summarized as follows:
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Fig. 1. Illustration of the proposed Endoscopic Depth Any Camera (EndoDAC) SSL
depth estimation framework. ViT-based encoder and DPT-liked decoder pre-trained
from Depth Anything [28] are employed for DepthNet. We utilize a small amount
of trainable parameters (1.6M) including Dynamic Vector-Based LoRA (DV-LoRA),
Convolutional Neck blocks and Multi-Scale Decoders to fine-tune the model. In Pose-
Intrinsics Net, ego-motion and camera intrinsic parameters are predicted with the same
encoder and separate decoders.

– We design DV-LoRA and a Convolution Neck block to efficiently adapt foun-
dation models to surgical scene depth estimation with an exceptionally small
amount of trainable parameters resulting in low computational resources and
short training time.

– We present a self-supervised adaptation strategy where the depth, ego-
motion, and camera’s intrinsic parameters estimations are trained in par-
allel. Our method can be adapted to only surgical videos from any unknown
camera which is broadly applicable to most surgical video datasets.

– Extensive experiments on two publicly available datasets have demonstrated
the superior performance of our proposed method over other state-of-the-art
SSL depth estimation methods with significantly fewer trainable parame-
ters. It also reveals the important prospects of our proposed model in the
endoscopic domain.

2 Method

2.1 Preliminaries

Foundation Models for Depth Foundation Models generally refer to power-
ful pre-trained models trained on extensive amounts of data which enable them
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to exhibit strong generalization capabilities across multiple tasks and scenar-
ios. Dense Prediction Transformer (DPT) [19] is a depth estimation foundation
model based on Vision Transformer (ViTs). DINOv2 [16] is a semantic founda-
tion model suitable for many vision tasks including depth estimation with sepa-
rate decode decoders. In this work, we aim to adapt Depth Anything (DA) [28],
which is a depth estimation foundation model trained on large-scale labeled and
unlabeled data, to endoscopic scenes.

Low-Rank Adaptation (LoRA) [12] LoRA was proposed to fine-tune large-
scale foundation models to downstream tasks. It was motivated by the obser-
vation that the pre-trained large model’s learning ability remains unaffected
even when randomly projected onto a smaller subspace. LoRA achieves a sig-
nificant reduction in the number of trainable parameters for downstream tasks
by incorporating trainable rank decomposition matrices into each layer of the
Transformer architecture while keeping the pre-trained model weights frozen.
To be specific, for a pre-trained weight matrix W0 ∈ Rd×k, LoRA modifies the
update to:

h = W0x+∆Wx = W0x+BAx. (1)

where B ∈ Rd×r, A ∈ Rr×k with the rank r ≪ min(d, k); W0 is frozen during
training and only A and B receive gradient updates.

2.2 Proposed Framework: EndoDAC

As illustrated in Fig. 1, The architecture of our proposed Endoscopic Depth Any
Camera (EndoDAC) framework aims to adapt the depth estimation foundation
model - Depth Anything [28] - to the endoscopic domain in a self-supervised
manner with minimal training cost. The framework mainly contains two sec-
tions: DepthNet and Pose-Intrinsics Net. The DepthNet estimates the multi-scale
depth map of a single endoscopic image, while Pose-Intrinsics Net estimates the
motion variation between adjacent images and the camera’s intrinsic parameters.
The DepthNet consists of a ViT-based encoder and a DPT-liked decoder with
pre-trained weights. We implement the trainable DV-LoRA layers and Convolu-
tional Neck blocks with the frozen transformer blocks to efficiently fine-tune the
model. The Pose-Intrinsics Net estimates the camera ego-motion and intrinsic
parameters with the same encoder but separate decoders. The estimated depth
is reprojected back to the 2-D plane with the ego-motion information to generate
the reconstructed image. The model can therefore be optimized by minimizing
the loss between the reconstructed image and the target image. Finally, our En-
doDAC only requires endoscopic videos for training and can be applied to any
surgical videos without giving the camera intrinsic information.

DepthNet Different from fine-tuning the whole model, EndoDAC freezes the
model and adds trainable DV-LoRA layers, Convolutional Neck blocks, and
Multi-Scale Decoders, which largely reduces the required memory and compu-
tation resources for training and also benefits from convenient deployment.
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Fig. 2. Illustration of (a) Transformer Efficient Tuning Block with DV-LoRA and (b)
Convolution Neck block. In DV-LoRA, we use the gradient color and arrows to represent
the dynamic variation between training and frozen states.

A Vision Transformer (ViT), which DA is based on, is used as the backbone
of the encoder. Different from conventional LoRA design, we innovatively intro-
duce Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) to fine-tune the
model more efficiently. Fig. 2(a) presents our fine-tuning architecture where DV-
LoRA is only applied in two MLP layers for more comprehensive adaptation. In
contrast to LoRA, our DV-LoRA is expressed as:

xout = Ŵxin = Wxin + ΛvBΛuAxin, (2)

where xin, xout are inputs and outputs of MLP layers; W is the frozen projection
layer; A and B are trainable LoRA layers; Λv and Λu are trainable vectors U
and V in diagonal matrices form. At the beginning of training, trainable vectors
U and V are frozen while only LoRA layers A and B are trainable. After a
warm-up phase, the state of DV-LoRA changes dynamically where A and B are
frozen and U and V become trainable. We only train LoRA layers with a good
initialization and utilize trainable vectors to fine-tune the proposed model with
fewer parameters.

Furthermore, as demonstrated by [18], ViTs tend to weaken high-frequency
signals, which could have negative effects on depth estimation. Therefore, in-
spired by [30], we employ Convolution Neck blocks to enhance our method. We
incorporate a Convolutional Neck block after each 3rd, 6th, 9th and 12th trans-
former efficient tuning block. The details are presented in Fig. 2(b) where three
convolutional layers with LayerNorm and a residual connection are utilized to
feed forward to the results of transformer blocks.

We utilize the DPT-liked decoder to estimate the depth maps. Different from
the previous approach where only one depth decoder is applied at the highest
resolution, we propose to exploit Multi-Scale Decoders at different fusion levels
to generate multi-scale depth maps. Therefore, the feature representations are
progressively reassembled and fused at various resolutions. The reassemble and
fusion blocks are frozen and only depth decoders are trainable.
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Pose-Intrinsics Net Simultaneous learning of depth and motion depends on
the relationship between adjacent frames, related depth map and camera matrix:

z
′
p

′
= KRK−1zp+Kt, (3)

where K refers to the intrinsic matrix given by K =

∣∣∣∣∣∣
fx 0 x0

0 fy y0
0 0 1

∣∣∣∣∣∣ , p and p
′
are

pixel coordinates before and after the transformation of rotation matrix R and
translation vector t; z and z

′
are corresponding depths. Previous work [9] has

demonstrated that given Equation. (3), no K̃ and R̃ exists such that K̃R̃K̃−1 =
KRK−1 leading the estimation of K, R and t converges simultaneously. There-
fore, we utilize a shared ResNet [11] encoder which takes two adjacent color
images as input and outputs the 6-DoF relative pose and camera intrinsics with
two separate decoders.

Self-supervised Depth and Ego-motion Estimation With depth z, cam-
era intrinsics K, rotation matrix R and translation vector t predicted by the
networks and given source image Is, the reconstructed Image Is→t is obtained
with the re-projection(π) defined by Equation. (3) described as:

Is→t = π (z,K,R, t, Is) . (4)

We utilize an appearance flow network and an optical flow network proposed
in [22] to compensate for the inconsistent lighting problem. A photometric loss
combing L1 loss and structural similarities (SSIM) [26] is used to assess the
image difference defined by:

Lp = α
1− SSIM (It, Is→t)

2
+ (1− α) |It − Is→t| . (5)

An edge-aware loss [8] is also used to maintain the edges defined by:

Le = |∂xd| e−|∂xI| + |∂yd| e−|∂yI|, (6)

where d represents the mean-normalized inverse depth of I.

3 Experiments and Results

SCARED Dataset. SCARED was first proposed for a challenge in MICCAI
2019 containing 35 endoscopic videos with 22950 frames of fresh porcine cadaver
abdominal anatomy collected with a da Vinci Xi endoscope. Each video is ac-
companied by ground truth depth maps collected by a projector and ground
truth poses and camera intrinsic. We followed the split scheme in [22] where
the SCARED dataset is split into 15351, 1705, and 551 frames for the training,
validation and test sets, respectively.



Title Suppressed Due to Excessive Length 7

Hamlyn Dataset. Hamlyn is a laparoscopic and endoscopic video dataset taken
from various surgical procedures with challenging in vivo scenes. We followed the
selection in [21] with 21 videos for validation.
Implementation Details. The framework is implemented with PyTorch on
NVIDIA RTX 3090 GPU. We utilize two AdamW [15] optimizers separately for
DepthNet and Pose-Intrinsics Net with initial learning rates of 1 × 10−4. The
rank for DV-LoRA is set to 4, warm up step is set to 5000 and α = 0.85 for Lp.
We propose the same training augmentations followed [22, 29] and batch size is
set to 8 with 20 epochs in total.
Evaluation Settings. Following [6,22,28,29], we compute the 5 standard met-
rics: Abs Rel, Sq Rel, RMSE, RMSE log and δ for evaluation. We re-scale the
predicted depth map by a median scaling method [6, 22, 33] during evaluation.
We also perform a 5-frame pose evaluation following [22] and adopt the metric
of absolute trajectory error (ATE).

3.1 Results

Table 1. Quantitative depth comparison on SCARED dataset of SOTA self-supervised
learning depth estimation methods. The best results are in bold and the second-best
results are underlined. ”G.I.” refers to given camera intrinsic parameters. ”Total.” and
”Train.” refer to the total and trainable parameters utilized in DepthNet.

Method Year G.I. Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ ↑ Total.(M) Train.(M) Speed (ms)

S
C
A
R
E
D

Fang et al. [7] 2020 ✓ 0.078 0.794 6.794 0.109 0.946 136.8 136.8 -

Defeat-Net [23] 2020 ✓ 0.077 0.792 6.688 0.108 0.941 14.8 14.8 -
SC-SfMLearner [3] 2019 ✓ 0.068 0.645 5.988 0.097 0.957 14.8 14.8 -

Monodepth2 [8] 2019 ✓ 0.069 0.577 5.546 0.094 0.948 14.8 14.8 -

Endo-SfM [17] 2021 ✓ 0.062 0.606 5.726 0.093 0.957 14.8 14.8 -
AF-SfMLearner [22] 2022 ✓ 0.059 0.435 4.925 0.082 0.974 14.8 14.8 8.0

Yang et al. [29] 2024 ✓ 0.062 0.558 5.585 0.090 0.962 2.0 2.0 -
DA (zero-shot) [28] 2024 ✓ 0.084 0.847 6.711 0.110 0.930 97.5 - 13.8

DA (fine-tuned) [28] 2024 ✓ 0.058 0.451 5.058 0.081 0.974 97.5 11.2 13.8

EndoDAC (Ours) - ✓ 0.051 0.341 4.347 0.072 0.981 99.0 1.6 17.7
EndoDAC (Ours) - ✕ 0.052 0.362 4.464 0.073 0.979 99.0 1.6 17.7

H
a
m
ly
n

Endo Depth & Motion [21] 2021 ✓ 0.185 5.424 16.100 0.225 0.732 - - -

AF-SfMLearner [22] 2022 ✓ 0.168 4.440 13.870 0.204 0.770 14.8 14.8 7.7
DA (fine-tuned) [28] 2024 ✓ 0.170 4.413 13.920 0.205 0.765 97.5 - 12.5

EndoDAC (Ours) - ✓ 0.138 2.796 11.491 0.171 0.813 99.0 1.6 15.7

EndoDAC (Ours) - ✕ 0.156 3.854 12.936 0.193 0.791 99.0 1.6 15.7

Depth Estimation. The proposed method is compared with several SOTA self-
supervised methods [3, 7, 8, 17, 21–23,29], Depth Anything [28] model with and

Input OursAF-SfMLearnerDA (zero-shot) DA (fine-tuned) Monodepth2

Fig. 3. Qualitative depth comparison on the SCARED dataset.
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Table 2. Ablation study on the modules of EndoDAC with estimated intrinsics. Specif-
ically, we (i) use the original LoRA [12] to replace DV-LoRA; (ii) remove the Convolu-
tion Neck blocks; (iii) use a single depth decoder to replace the multi-scale decoders.

DV-LoRA Conv Neck M.S. Decoders Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ ↑
✓ ✕ ✕ 0.054 0.397 4.718 0.076 0.978
✕ ✓ ✕ 0.053 0.408 4.768 0.076 0.977

✕ ✕ ✓ 0.051 0.379 4.621 0.074 0.977

✓ ✓ ✕ 0.052 0.380 4.598 0.075 0.977
✓ ✕ ✓ 0.052 0.378 4.614 0.075 0.978

✕ ✓ ✓ 0.053 0.366 4.516 0.074 0.978

✓ ✓ ✓ 0.052 0.362 4.464 0.073 0.979

without full parameter fine-tuning on two datasets. Note that we zero-shot eval-
uated on Hamlyn with the models trained on SCARED. All the other compared
methods involving training have a total epoch greater or equal to 40 while our
approach only trains for 20 epochs. Table 1 presents the comparison of quan-
titative results of the aforementioned methods. Our method exceeds all of the
compared methods by a significant margin regardless of the awareness of camera
intrinsics. It is also notable that only 1.6 million parameters are trainable for
our model which accounts for 1.6% of the total parameters. Foundation models
generally utilize large models leading our framework slower in inference speed
compared to other methods, but a speed of 17.7 ms is still capable of real-time
implementation which makes our framework applicable for a variety of real-time
surgical applications. Fig. 3 shows several qualitative results visualization. We
can observe that our method generates a more accurate geometry relation within
the depth map while also preserving the global smoothness of tissues. More vi-
sualization of depth and 3D reconstruction are presented in Supplementary.
Ablation Studies. To further demonstrate the validity of our proposed model,
we conduct ablation studies on the different modules of EndoDAC. As presented
in Table 2, the ablation studies demonstrate the effectiveness of each module.
Pose and Intrinsics Estimation. Two sequences are selected followed [22,28]
for evaluation of pose and intrinsic estimation. Pose estimation is evaluated on
two sequences separately while intrinsic estimation is evaluated with a weighted
average percentage error on two sequences. The results are presented in Ta-
ble 3 and Table 4. Table 3 shows our proposed method obtains satisfactory
performances on pose estimation with or without given intrinsic parameters.
Our proposed method can also estimate accurate camera intrinsic parameters
with a maximum percentage error of 4.02%. Visualization of pose estimation
trajectories of two sequences are presented in Supplementary.

4 Conclusion

In this paper, we propose an efficient framework to adapt foundation models to
SSL endoscopic depth estimation. Different from previous methods, we intro-
duce DV-LoRA and Convolutional Neck to fine-tune depth foundation models
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Table 3. Quantitative pose estimation compar-
ison on two selected sequences. ”G.I.” refers to
given camera intrinsic parameters.

Method G.I. ATE ↓ (Seq.1) ATE ↓ (Seq.2)

Monodepth2 [8] ✓ 0.0769 0.0554
Endo-SfM [17] ✓ 0.0759 0.0500

AF-SfMLearner [22] ✓ 0.0742 0.0478

EndoDAC (Ours) ✓ 0.0741 0.0512
EndoDAC (Ours) ✕ 0.0762 0.0487

Table 4. Quantitative intrinsic esti-
mation results.

Intrinsics Ground Truth Percentage Error ↓(%)

fx 0.82 3.17

fy 1.02 4.02

cx 0.5 0.70

cy 0.5 1.70

to the endoscopic domain with limited trainable parameters and training costs.
We also utilize a separate decoder to estimate camera intrinsic and ego-motion
simultaneously. Our method is widely applicable to surgical datasets where only
surgical videos are required for training. Extensive experiments demonstrate the
superior performance of our proposed method even without knowledge of the
camera and intrinsic parameters information.
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