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Abstract. In the realm of robot-assisted minimally invasive surgery, dy-
namic scene reconstruction can significantly enhance downstream tasks
and improve surgical outcomes. Neural Radiance Fields (NeRF)-based
methods have recently risen to prominence for their exceptional ability to
reconstruct scenes but are hampered by slow inference speed, prolonged
training, and inconsistent depth estimation. Some previous work utilizes
ground truth depth for optimization but it is hard to acquire in the sur-
gical domain. To overcome these obstacles, we present Endo-4DGS, a
real-time endoscopic dynamic reconstruction approach that utilizes 3D
Gaussian Splatting (GS) for 3D representation. Specifically, we propose
lightweight MLPs to capture temporal dynamics with Gaussian deforma-
tion fields. To obtain a satisfactory Gaussian Initialization, we exploit a
powerful depth estimation foundation model, Depth-Anything, to gen-
erate pseudo-depth maps as a geometry prior. We additionally propose
confidence-guided learning to tackle the ill-pose problems in monocu-
lar depth estimation and enhance the depth-guided reconstruction with
surface normal constraints and depth regularization. Our approach has
been validated on two surgical datasets, where it can effectively render in
real-time, compute efficiently, and reconstruct with remarkable accuracy.
Our code is available at https://github.com/lastbasket/Endo-4DGS.

Keywords: 3D Reconstruction · Neural Rendering · Robotic Surgery.

1 Introduction

Endoscopic procedures have become a cornerstone in minimally invasive surgery,
offering patients with reduced trauma and quicker recovery times [9, 17, 29]. In
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Fig. 1. Ground truth reference, estimated depth from Depth-Anything; 3D textures,
rendered image, and predicted depth of our proposed method.

this case, accurate and dynamic 3D reconstruction of the endoscopic scene is
critical to enhancing the surgeon’s spatial understanding and navigation, facil-
itating more precise and efficient interventions [14]. However, the complex and
constrained nature of endoscopic scenes poses significant challenges for tradi-
tional 3D reconstruction techniques due to factors such as limited field-of-view,
occlusions, and dynamic tissue deformation [22,24,27].

Recent advancements in endoscopic 3D reconstruction have been boosted
by the capabilities of Deep Neural Networks (DNNs) [19] and Neural Radiance
Fields (NeRFs) [15]. Some studies have achieved strong performance in depth es-
timation and reconstruction under endoscopy, particularly through stereo recon-
struction [1,13], structure from motion [2], depth and pose estimation [16,18] or
extensive visual pre-training [7]. EndoNeRF [22] is the first to leverage NeRF [15]
in endoscopic scenes by dual neural fields approach to model tissue deformation
and canonical density. EndoSurf [27] further employs signed distance functions
to model tissue surfaces, imposing explicit self-consistency constraints on the
neural field. To tackle the lengthy training time requirement, LerPlane [24] con-
structs a 4D volume by introducing 1D time to the existing 3D spatial space.
This extension allows for the formulation of both static fields and dynamic fields
by utilizing the spatial-temporal planes, respectively, which leads to a substantial
decrease in computational resources. However, reconstructing high-dimensional
deformable scenes in real-time remains a challenge.

NeRF-based methods have revolutionized 3D scene reconstruction but face
challenges such as slow rendering speeds and suboptimal localization accuracy [4].
Addressing these issues, 3D Gaussian Splatting (GS) has emerged as an effective
alternative, offering fast inference and superior 3D representation [11]. By opti-
mizing anisotropic 3D Gaussians using a set of scene images, 3D GS successfully
captures the spatial positioning, orientations, color properties, and alpha blend-
ing factors, reconstructing both the geometry and visual texture of the scene.
Concurrent works [12,28] also demonstrate fast rendering performance by using
4D Gaussians for scene reconstruction.

To tackle the deformable tissue reconstruction challenges in endoscopic scenes,
we further incorporate the temporal dimension as the fourth axis to model dy-
namic environments [23]. Moreover, current solutions for depth prior-assisted
reconstruction depend on multi-view information and the static scene assump-
tion [6,21], which are not always feasible in the surgical scenario. Meanwhile, the
predictions of existing monocular depth estimation methods [25] also suffer from
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ill-posed problems. The predicted depth results in uncertain measurements even
with little changes in the environment, e.g. small deformation on the tissues.
Therefore, reconstruction using depth prior supervision remains a challenge in
deformable surgery scenarios. To overcome these hurdles, we leverage a foun-
dation model pre-trained on the large-scale dataset, e.g. Depth-Anything [25].
By applying Depth-Anything, we project the pre-trained depth into 3D for more
robust 4D Gaussian initialization. To address the challenges posed by inaccurate
issues in estimating depth using a monocular camera, we introduce a confidence-
guided learning approach that effectively reduces the influence of noisy or un-
certain measurements in the pre-trained depth estimation. We additionally im-
plement surface normal constraints and depth regularization to strengthen the
pseudo-depth’s accuracy and geometry constraint. Fig. 1 showcases our 3D tex-
tures, the rendered images, and the depth predictions for endoscopic views.
Specifically, our contributions in this paper are threefold:

– We present Endo-4DGS, an innovative technique that adapts Gaussian Splat-
ting for endoscopic scene reconstruction. Utilizing pseudo-depth generated
by Depth-Anything, Endo-4DGS achieves remarkable reconstruction out-
comes without needing ground truth depth data.

– We propose confidence-guided learning to tackle the ill-pose monocular depth
adaption problems, and further employ depth regularization and surface nor-
mal constraints against the depth prior adaption challenge in the deformable
surgical reconstruction task.

– Our extensive validation on two real surgical datasets shows that Endo-4DGS
attains high-quality reconstruction, excels in real-time performance, reduces
training expenditures, and demands less GPU memory, which sets the stage
for advancements in robot-assisted surgery.

2 Methodology

In this section, we introduce the representation and rendering formula of 4D
Gaussians [23] in Sec. 2.1 and demonstrate our motivation and detailed imple-
mentation of the depth prior-based reconstruction in Sec. 2.2.

2.1 Preliminaries

3D GS [11] utilizes 3D differentiable Gaussians as the unstructured representa-
tion, allowing for a differentiable volumetric representation that can be rapidly
rasterized and projected onto a 2D surface for swift rendering. With covari-
ance matrix Σ and mean µ the 3D GS at position x is described as G(x) =

e−
1
2 (x−µ)TΣ−1(x−µ), where the covariance Σ can be further decomposed into

Σ = RSSTRT with the scaling S and rotation R. Introducing by [26], with
the viewing transform W and the Jacobian of the affine approximation of the
projective transformation J, covariance in the camera plane can be described as
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Fig. 2. Illustration of our proposed Endo-4DGS framework. We utilize monocular
images, estimated depths from Depth-Anything, and surgical tool masks for train-
ing. 3D Guassian is represented as G with position mean µ, rotation R, scaling S
opacity o, and spherical harmonics SH. 4D Gaussian is described as G′ = G + ∆G.
Lcolor,Lcon,Ldepth,Lsurf ,Ltv are the color loss, confidence loss, depth regularization
loss, surface normal loss and total-variational loss, respectively.

Σ′ = JWΣWTJT . The final rendering equation is:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi), (1)

where Ĉ is the predicted pixel color from N points. ci, αi are the color defined
by the spherical harmonics coefficients and the density calculated by multiplying
the 2D covariance Σ′ with the learned opacity oi.

2.2 Proposed Methodology

4D Gaussian Splatting for Deformable Scene Representation. Inspired
by [23], we represent the deformable surgical scene with the 4D Gaussian G′ =
∆G+G which includes a static 3D Gaussian G and its deformation ∆G = F(G, t),
where F is the deformation network and t is the time. The spatial-temporal en-
coder H is defined with multi-resolution Hexplanes [3] Rl(i, j) and a tiny MLP
ϕd, H(G, t) = {Rl(i, j), ϕd|(i, j) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}, l ∈
{1, 2}}, and the spatial-temporal feature is encoded as fd = H(G, t).

A multi-head Gaussian deformation decoder D = {ϕµ, ϕr, ϕs, ϕo, ϕSH} is
designed for decoding the deformation of position, rotation, scaling, opacity and
spherical harmonics SH with five tiny MLPs. The final representation of 4D
Gaussian can be expressed as:

G′ = {µ+ ϕµ(fd), r + ϕr(fd), s+ ϕs(fd), o+ ϕo(fd),SH+ ϕSH(fd)}
= {µ+∆µ,R+∆R,S+∆S, o+∆o,SH+∆SH}

(2)
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Gaussians Initialization with Depth Prior. Retrieving accurate point clouds
in surgical scenes is challenging since there is only monocular visual information
from the consumer-level endoscopes. Therefore, we propose to use the pre-trained
depth to implement the point cloud initialization for the 4D Gaussian. With the
pre-trained depth estimation model and the input image I, we estimate an in-
verse depth map Dinv. Then a scaling β is applied to recover the depth map
D = β

Dinv
in the camera coordinate. Given the camera intrinsic matrix K1, and

the extrinsic matrix K2, we project the point cloud P ∈ RN×3 with size N from
the given image I as follows:

P = K−1
2 K−1

1 [(I ⊙M), D], (3)

where M is the mask for the input image, ⊙ is the element-wise multiplication,
and [·] indicates concatenation. With the point cloud from depth prior, we ini-
tialize µ,R, making the training process faster for convergence and more robust
in terms of geometry.

Confidence Guided Learning.Monocular reconstruction with estimated depth
is an ill-pose problem since there is no access to the ground truth geometry infor-
mation. Inspired by [6,20], we formulate our solution with a probabilistic model
to learn statistics for depth from Depth-Anything, which is defined as:

D̂ =

∑
i∈N diαi

∏i−1
j=1(1− αi)∑

i∈N Wi
, Wi = αi

i−1∏
j=1

(1− αi) (4)

where di is the depth of the center of the Gaussian obtained by projecting to
the z-axis of the camera coordinate. Wi ∈ (0, 1) is defined as the confidence
weight for the corresponding point, which is closer to 1 with higher confidence.
Following the above definition, the confidence guidance loss can be expressed as:

Lcon = E[
1

2W 2
||D̂norm−Dnorm||22+log(W )]+E[

1

2W 2
||Ĉ−C||22+log(W )], (5)

where E(·) is the expectation, Dnorm and D̂norm are the depth prior and ren-
dered depth normalized to (0, 1). While we penalize the depth and color with
less confidence, we also add the log(·) as a regularization term. The confidence
weight, therefore, maximizes the error where the rendered depth is different from
the depth prior while reducing the influence of the uncertain value of the pre-
trained depth estimation.

Surface Normal Constraints and Depth Regularization. To utilize the
pre-trained depth map more effectively as the pseudo-ground truth, we propose
to utilize depth regularization loss and surface normal loss. Following [5], we

approximate the surface normal n̂i ∈ N̂ with the shortest axis:

n̂i = Ri[r :], r = argmin([s1, s2, s3]), (6)
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where r is the index of the shortest scaling in Si = diag(s1, s2, s3) selected by
argmin(·). Then we calculate the gradient of the depth prior ∇D = (GW , GH),
and formulate the pseudo surface normal as:

ni = [
GW

i√
(GW

i )2 + (GH
i )2 + 1

,
GH

i√
(GW

i )2 + (GH
i )2 + 1

,
1√

(GW
i )2 + (GH

i )2 + 1
],

(7)
where GW , GH are the gradients along the width and height of the depth map.
The surface normal constraints is described as Lsurf = ∥N − N̂∥1. We also
regularize the predicted depth from 4D Gaussian with a normalized depth loss
and gradient loss. The depth regularization term Ldepth is expressed as:

Ldepth = λnorm∥Dnorm − D̂norm∥1 + λgrad(1− Pcorr(∥∇D∥2, ∥∇D̂∥2)), (8)

where Pcorr(·) is the Pearson Correlation Coefficient, λnorm, λgrad are the weights
for the normalized depth loss and gradient loss.

With the Lcolor color loss and a grid-based total-variational loss Ltv [3,8,11],
our final loss for optimizing can be represented as:

L = Lcolor + Ltv + Ldepth + λsurfLsurf + λconLcon, (9)

where λsurf , λcon are the weights for the surface constraints and confidence loss.
Following [23], we emit Ltv for the training of the static 3D Gaussians.

3 Experiments

3.1 Dataset

We evaluate the performance based on two publicly available datasets, Stere-
oMIS [10] and EndoNeRF [22]. The StereoMIS dataset [10] is a stereo video
dataset captured by the da Vinci Xi surgical system, consisting of 11 surgi-
cal sequences by in-vivo porcine subjects, where we extract the 800 to 1000
frames from the first scene. The EndoNeRF dataset [22] includes two samples of
prostatectomy via stereo cameras and provides estimated depth maps based on
stereo-matching techniques, they also include challenging scenes with tool oc-
clusion and non-rigid deformation. The training and validation splitting follows
the 7:1 strategy in [27]. We use PSNR, SSIM, and LPIPS to evaluate the 3D
scene reconstruction performance. We also report the results of training time,
inference speed, and GPU memory usage on one single RTX4090 GPU.

3.2 Implementation Details

All experiments are conducted on the RTX4090 GPU with the Python Py-
Torch framework. We adopt the Adam optimizer with an initial learning rate of
1.6× 10−3. We employ the Depth-Anything-Small model for pseudo-depth map
generation by considering accuracy, memory usage, and computation efficiency.
We adopt the depth scale β = 1000 and λnorm = 0.01, λgrad = 0.001, λsurf =
0.001, λcon = 0.0001 for regularization. An encoding voxel size of [64, 64, 64, 75]
is applied, where the four dimensions are length, width, height, and time.
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3.3 Results

Table 1. Comparison experiments on the EndoNeRF dataset [22] against EndoN-
eRF [22], EndoSurf [27], and LerPlane [24]. The best results are in bold.

Models
EndoNeRF-Cutting EndoNeRF-Pulling Training

Time ↓ FPS ↑ GPU
Usage ↑PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

EndoNeRF [22] 35.84 0.942 0.057 35.43 0.939 0.064 6 hours 0.2 4 GB
EndoSurf [27] 34.89 0.952 0.107 34.91 0.955 0.120 7 hours 0.04 17 GB

LerPlane-32k [24] 34.66 0.923 0.071 31.77 0.910 0.071 8 mins 1.5 20 GB
Endo-4DGS 36.56 0.955 0.032 37.85 0.959 0.043 4 mins 100 4GB

Table 2. Comparison experiments on the StereoMIS [10], against EndoNeRF [22],
EndoSurf [27], and LerPlane [24]. The best results are in bold.

Models
PSNR ↑ SSIM ↑ LPIPS ↓ Training

Time ↓ FPS ↑ GPU
Usage ↓

EndoNeRF [22] 21.49 0.622 0.360 5 hours 0.2 4 GB
EndoSurf [27] 29.87 0.809 0.303 8 hours 0.04 14 GB

LerPlane-32k [24] 30.80 0.826 0.174 7 mins 1.7 19 GB
Endo-4DGS 32.69 0.850 0.148 7 mins 100 4 GB

We conducted a comprehensive comparison of our proposed method with
state-of-the-art approaches for surgical scene reconstruction. Specifically, we re-
produce EndoNeRF [22], EndoSurf [27], and LerPlane [24] with the original im-
plementation. The evaluation results on the EndoNeRF [22] and StereoMIS [10]
datasets are presented in Table 1 and Table 2. Upon analysis, we observed that
while EndoNeRF [22] and EndoSurf [27] achieved relatively high performance,
they required hours of training, making them time-consuming. On the other
hand, LerPlane [24] significantly reduced the training time to approximately 8
minutes but incurred a slight degradation in rendering performance. It is im-
portant to note that all of these state-of-the-art methods suffered from very low
frames per second (FPS), which limited their practical application in real-time
surgical scene reconstruction tasks. In contrast, our proposed method not only
outperformed all evaluated metrics on both datasets but also achieved a real-
time inference speed of 100 FPS, where the training was accomplished with only
4 minutes and 4GB of GPU memory. The significant improvement in inference
speed makes our method highly suitable for real-time endoscopic applications.

We have provided qualitative results for EndoNeRF datasets [22] in Fig. 3.
Notably, the visualizations demonstrate that our proposed method preserved a
substantial amount of visible details with accurate geometry features. The afore-
mentioned quantitative and qualitative results strongly support the effectiveness
of our method in achieving high-quality 3D reconstruction scenes at real-time
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Table 3. Ablation experiments of the proposed method on EndoNeRF dataset [22].
To observe the performance changes, we remove (i) the depth regularization, (ii) the
surface constraints, and (iii) the confidence guidance. The best results are in bold.

Depth
Regularization

Surface
Constraints

Confidence
Guidance

EndoNeRF-Cutting EndoNeRF-Pulling
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

% % % 35.14 0.938 0.046 35.39 0.937 0.082

! % % 36.00 0.949 0.040 35.68 0.942 0.072

% ! % 35.22 0.940 0.057 35.97 0.945 0.066

% % ! 35.54 0.941 0.048 35.68 0.942 0.066

! ! % 36.24 0.951 0.038 36.35 0.945 0.062

! % ! 36.22 0.951 0.036 36.94 0.952 0.053

% ! ! 36.08 0.946 0.036 36.15 0.943 0.064

! ! ! 36.56 0.955 0.032 37.85 0.959 0.043
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Fig. 3. Qualitative comparison on the EndoNeRF dataset [22] against EndoNeRF [22],
EndoSurf [27], and LerPlane [24].

inference speeds. This highlights its potential for future real-time endoscopic ap-
plications. We provide more visualizations on StereoMIS in the supplementary.

To further analyze the contributions of our designs, we conducted an ablation
study on the EndoNeRF dataset [22] by removing (i) depth regularization, (ii)
surface normal constraints, (iii) confidence-guided learning. The experimental
results in Table 3 unequivocally demonstrate that the absence of any of the
components leads to a substantial degradation in performance. These results
highlight the crucial role played by each component in enhancing the quality,
accuracy, and overall performance of our method.
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4 Conclusion

In this paper, we propose Endo-4DGS, a real-time, high-fidelity reconstruc-
tion method of deformable tissues. Different from previous works, lightweight
MLPs are implemented to capture temporal dynamics with Gaussian deforma-
tion fields. We further propose to estimate the depth map by a foundation model
Depth-Anything for Gaussian Initialization. The framework is additionally en-
hanced with confidence-guided strategy, surface normal constraints, and depth
regularization to better utilize the depth prior constraint. Extensive experiments
demonstrate the superior performance and fast inference speed of our proposed
method against other state-of-the-art methods. These results underline the vast
potential of Endo-4DGS to improve a variety of surgical applications, allowing
for better decision-making and safety during operations.

Acknowledgements. This work was supported by Hong Kong RGC CRF C4026-21G,
RIF R4020-22, GRF 14211420, 14216020 & 14203323); Shenzhen-Hong Kong-Macau
Technology Research Programme (Type C) STIC Grant SGDX20210823103535014
(202108233000303).

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Bae, G., Budvytis, I., Yeung, C.K., Cipolla, R.: Deep multi-view stereo for dense
3d reconstruction from monocular endoscopic video. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 774–783.
Springer (2020)

2. Barbed, O.L., Montiel, J.M., Fua, P., Murillo, A.C.: Tracking adaptation to im-
prove superpoint for 3d reconstruction in endoscopy. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 583–593.
Springer (2023)

3. Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 130–141 (2023)

4. Chen, G., Wang, W.: A survey on 3d gaussian splatting. arXiv preprint
arXiv:2401.03890 (2024)

5. Cheng, K., Long, X., Yang, K., Yao, Y., Yin, W., Ma, Y., Wang, W., Chen, X.:
Gaussianpro: 3d gaussian splatting with progressive propagation. arXiv preprint
arXiv: (2024)

6. Chung, J., Oh, J., Lee, K.M.: Depth-regularized optimization for 3d gaussian splat-
ting in few-shot images. arXiv preprint arXiv:2311.13398 (2023)

7. Cui, B., Islam, M., Bai, L., Ren, H.: Surgical-dino: Adapter learning of foundation
model for depth estimation in endoscopic surgery. arXiv preprint arXiv:2401.06013
(2024)

8. Fang, J., Yi, T., Wang, X., Xie, L., Zhang, X., Liu, W., Nießner, M., Tian, Q.:
Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia
2022 Conference Papers. pp. 1–9 (2022)



10 Y. Huang et al.

9. Gao, H., Yang, X., Xiao, X., Zhu, X., Zhang, T., Hou, C., Liu, H., Meng, M.Q.H.,
Sun, L., Zuo, X., et al.: Transendoscopic flexible parallel continuum robotic mech-
anism for bimanual endoscopic submucosal dissection. The International Journal
of Robotics Research p. 02783649231209338 (2023)

10. Hayoz, M., Hahne, C., Gallardo, M., Candinas, D., Kurmann, T., Allan, M., Sznit-
man, R.: Learning how to robustly estimate camera pose in endoscopic videos.
International Journal of Computer Assisted Radiology and Surgery pp. 1185—-
1192 (2023)

11. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

12. Liu, Y., Li, C., Yang, C., Yuan, Y.: Endogaussian: Gaussian splatting for de-
formable surgical scene reconstruction. arXiv preprint arXiv:2401.12561 (2024)

13. Long, Y., Li, Z., Yee, C.H., Ng, C.F., Taylor, R.H., Unberath, M., Dou, Q.: E-
dssr: efficient dynamic surgical scene reconstruction with transformer-based stereo-
scopic depth perception. In: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part IV 24. pp. 415–425. Springer
(2021)

14. Mahmoud, N., Cirauqui, I., Hostettler, A., Doignon, C., Soler, L., Marescaux,
J., Montiel, J.M.M.: Orbslam-based endoscope tracking and 3d reconstruction. In:
Computer-Assisted and Robotic Endoscopy: Third International Workshop, CARE
2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016,
Revised Selected Papers 3. pp. 72–83. Springer (2017)

15. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

16. Ozyoruk, K.B., Gokceler, G.I., Bobrow, T.L., Coskun, G., Incetan, K., Almalioglu,
Y., Mahmood, F., Curto, E., Perdigoto, L., Oliveira, M., et al.: Endoslam dataset
and an unsupervised monocular visual odometry and depth estimation approach
for endoscopic videos. Medical image analysis 71, 102058 (2021)

17. Psychogyios, D., Colleoni, E., Van Amsterdam, B., Li, C.Y., Huang, S.Y., Li, Y.,
Jia, F., Zou, B., Wang, G., Liu, Y., et al.: Sar-rarp50: Segmentation of surgical
instrumentation and action recognition on robot-assisted radical prostatectomy
challenge. arXiv preprint arXiv:2401.00496 (2023)

18. Shao, S., Pei, Z., Chen, W., Zhu, W., Wu, X., Sun, D., Zhang, B.: Self-supervised
monocular depth and ego-motion estimation in endoscopy: Appearance flow to the
rescue. Medical image analysis 77, 102338 (2022)

19. Stucker, C., Schindler, K.: Resdepth: Learned residual stereo reconstruction. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops. pp. 184–185 (2020)

20. Wang, F., Chen, Z., Wang, G., Song, Y., Liu, H.: Masked space-time hash en-
coding for efficient dynamic scene reconstruction. Advances in Neural Information
Processing Systems 36 (2024)

21. Wang, G., Chen, Z., Loy, C.C., Liu, Z.: Sparsenerf: Distilling depth ranking for
few-shot novel view synthesis. IEEE/CVF International Conference on Computer
Vision (ICCV) (2023)

22. Wang, Y., Long, Y., Fan, S.H., Dou, Q.: Neural rendering for stereo 3d recon-
struction of deformable tissues in robotic surgery. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 431–441.
Springer (2022)



Endo-4DGS 11

23. Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Xinggang,
W.: 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528 (2023)

24. Yang, C., Wang, K., Wang, Y., Yang, X., Shen, W.: Neural lerplane representations
for fast 4d reconstruction of deformable tissues. arXiv preprint arXiv:2305.19906
(2023)

25. Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Un-
leashing the power of large-scale unlabeled data. arXiv:2401.10891 (2024)
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