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Abstract. Wireless Capsule Endoscopy (WCE) is highly valued for its
non-invasive and painless approach, though its effectiveness is compro-
mised by uneven illumination from hardware constraints and complex in-
ternal dynamics, leading to overexposed or underexposed images. While
researchers have discussed the challenges of low-light enhancement in
WCE, the issue of correcting for different exposure levels remains un-
derexplored. To tackle this, we introduce EndoUIC, a WCE unified il-
lumination correction solution using an end-to-end promptable diffusion
transformer (DiT) model. In our work, the illumination prompt mod-
ule shall navigate the model to adapt to different exposure levels and
perform targeted image enhancement, in which the Adaptive Prompt
Integration (API) and Global Prompt Scanner (GPS) modules shall fur-
ther boost the concurrent representation learning between the prompt
parameters and features. Besides, the U-shaped restoration DiT model
shall capture the long-range dependencies and contextual information for
unified illumination restoration. Moreover, we present a novel Capsule-
endoscopy Exposure Correction (CEC) dataset, including ground-truth
and corrupted image pairs annotated by expert photographers. Exten-
sive experiments against a variety of state-of-the-art (SOTA) methods
on four datasets showcase the effectiveness of our proposed method and
components in WCE illumination restoration, and the additional down-
stream experiments further demonstrate its utility for clinical diagnosis
and surgical assistance. The code and the proposed dataset are available
at github.com/longbai1006/EndoUIC.
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1 Introduction

Wireless Capsule Endoscopy (WCE) has revolutionized gastrointestinal (GI) di-
agnostics by offering a minimally invasive, painless way of examination in the GI
tract [30]. However, the effectiveness of WCE can often be influenced due to fac-
tors such as limited battery capacity, camera performance, and the complexity of
the GI tract [22]. Uneven illumination within the tract can significantly degrade
image quality, thus affecting the accuracy and efficiency of diagnosis, screening,
and the provision of timely feedback [28]. While the issue of low-light image en-
hancement (LLIE) in WCE images has received considerable attention, leading
to various strategies to improve visibility in low-light areas [14,16], the challenge
of overexposure remains less explored [26]. Various solutions [2, 15, 17, 28] have
been put forward to enhance low-light WCE images. Nevertheless, the complex
and dynamic internal body environment will also result in overexposure, which
obscures critical details with excessive brightness, as the brightness levels often
extend beyond the dynamic range these techniques can adequately adjust [20].

Conventional approaches have been utilized to enhance the structure visibil-
ity in WCE images [20,24]. However, compared to deep learning methods, they
tend to be less adaptive, less content-aware, and require manual intervention.
Sequentially, Garćıa-Vega et al. [5] implemented a structure-aware deep neu-
ral network for exposure correction (EC), and employed CycleGAN [32] for EC
dataset generation [4]. Presently, solutions for WCE unified illumination adap-
tation are still underexplored, lacking an end-to-end architecture that can unify
illumination correction tasks. Furthermore, existing endoscopic EC datasets pro-
duced via generative models struggle to replicate the complexity encountered in
real-world scenarios. This gap underscores the need for a unified light adaptation
model capable of concurrently tackling over & underexposed images, which is
crucial for the retention and enhancement of vital diagnostic details.

Denosing diffusion probabilistic models (DDPMs) have demonstrated out-
standing performance in low-level vision tasks including denoising, super resolu-
tion, and low-light enhancement, owing to their ability to model complex data
distributions and incorporate conditional information effectively [6, 23]. In sce-
narios involving over & underexposed images, which typically demand different
parameter spaces and optimization trajectories, directly training diffusion mod-
els might not be the best approach. Contrastive learning methods have already
been employed to learn varying image degradation types, while an additional
network would be needed [10]. To this end, we introduce a set of learnable
parameters that act as our prompt. These prompt parameters are optimized
through an end-to-end process, learning to adjust the model’s prior for different
image degradation. Then, it shall steer the model within the parameter space
toward different low-level details essential for EC and LLIE. Thus, leveraging the
task-specific knowledge acquired by the model, it dynamically adapts the input
data according to different brightness levels. Additionally, the prompt module
can act as an attention mechanism and increase the depth of the network. There-
fore, even if the input exhibits only one type of degradation, the model can still
maintain effective restoration performance. Moreover, to address the issue of data
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scarcity, we have collected a WCE dataset and invited photography experts to
annotate over & underexposed images manually. Specifically, our contributions
to this work can be summarized as three-fold:

– We propose EndoUIC - Endoscopic Unified Illumination Correction - a
promptable diffusion model for unified WCE illumination correction. Specif-
ically, the illumination prompt module is designed to navigate the diffusion
model toward specific illumination conditions.

– In our proposed framework, we embed a diffusion process within a U-shape
transformer to perceive global illumination and multiscale contextual infor-
mation, and utilize prompts to guide the illumination restoration procedure.
Our prompt module contains an Adaptive Prompt Integration (API) module,
which dynamically produces and integrates prompt parameters with feature
representations. Additionally, we incorporate the Global Prompt Scanner
(GPS) module to enhance the interaction between prompts and features.

– To tackle the data shortage issue, we propose a novel WCE EC dataset,
named Capsule-endoscopy Exposure Correction (CEC) dataset, with nor-
mal and wrongly exposed image pairs. Extensive comparison, ablation, and
downstream experiments on four datasets demonstrate the superior effec-
tiveness of our EndoUIC, showcasing its potential in clinical applications.

2 Methodology

2.1 Preliminaries

Visual Prompt Learning introduces a set of learnable parameters that pro-
vide deep learning models with contextual information regarding the image
degradation types in image restoration tasks [12, 18]. These prompts interact
with the features of the input image, directing the model to adaptively adjust to
different degradation types, thus restoring high-quality and clean images. This
method enables a single unified model to address multiple image degradation
challenges, enhancing the model’s generalization capabilities.

Pyramid Diffusion Models (PyDiff) is an LLIE diffusion model that imple-
ments a pyramid diffusion strategy [31]. Unlike DDPMs, where image resolution
remains constant throughout the reverse process, PyDiff starts with a lower
resolution and progressively increases it to a higher resolution in the diffusion
process. The forward and reverse process can be formulated with the given input
x0, time step t, noise schedule {α}Tt=0, and scaling schedule {U}Tt=0:

q (xt | xt−1) = N
(
xt;

√
ᾱt

(
x0 ↓Ut/Ut−1

)
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Fig. 1. The overview of our EndoUIC. Our network comprises the 4-level diffusion
transformer (DiT), which is used to predict the noise. In each upsampling stage of the
restoration DiT, the illumination prompt module is incorporated, which consists of the
Adaptive Prompt Integration (API) and a Global Prompt Scanner (GPS) blocks. ‘SFE’
and ‘OUT’ denote the shallow feature extractor and the output block, respectively.

in which αt ∈ (0, 1) and ᾱt =
∏t

i=1 αi. While at ≥ at+1 is getting bigger noise,
st ≤ st+1 is getting lower resolution. This approach optimizes the sampling
speed and achieves improved image restoration quality by gradually refining
image details with increasing resolution.

2.2 Proposed Method: EndoUIC

Our proposed EndoUIC framework is presented in Fig. 1, with the U-shape
restoration DiT to estimate noises. The network is optimized with simple L1

loss and the noise sampling strategy follows [31].

Restoration Diffusion Transformer. Our network begins with a shallow fea-
ture extractor that transforms the image into the feature representation R. The
features are then fed into the 4-level down-sampling transformer encoder and
up-sampling transformer decoder, which is similar to the UNet structure [19].
The skip connections are executed at each level of the encoder-decoder. With
X0 and X2 denoting the input and output feature respectively, each transformer
block can be formulated as:

X1 = Attn(Norm(X0)), X2 = FFN(Norm(X1)) (3)

in which the time embedding t is injected with X1. FFN denotes the Feed-
Forward Network. The decoder finally outputs a high-resolution image with nor-
mal illumination after propagating through the output block. Each up-sampling
stage incorporates an illumination prompt module. Firstly, the output of the



EndoUIC: Unified Illumination Correction in Capsule Endoscopy 5

prompt module is concatenated with the corresponding encoder’s skip connec-
tion output. Then it will be passed through a 1 × 1 convolutional (Conv) layer
before being input into the respective decoder.
Illumination Prompt Module. Our illumination prompt module shall utilize
additional prompt parameters to encode key discriminative information about
brightness degradation levels. The Adaptive Prompt Integration (API) block is
used to learn discriminative illumination information, and the Global Prompt
Scanner (GPS) integrates the learned prompt parameters with the image fea-
tures, guiding the model’s learning process. Given P as the learnable prompt
parameters, XIn as the input features, and XOut as the output features, the
prompt module can be formulated:

P ′ = FAPI(XIn;P ), XOut = FGPS(XIn;P
′) (4)

Adaptive Prompt Integration. The API module is designed to generate the
prompt parameters and integrate them with the adaptively learned feature maps.
We first define a set of learnable parameters P , which are designed to embed
different illumination conditions into the features. This design can efficiently
capture long-range dependencies to perceive global illumination information and
address local-region uneven illumination conditions. Thus, our method can also
effectively learn the illumination representation of features.

To achieve this, we refrain from directly multiplying P with the features
as this could diminish the correlation between P and the features. Instead, we
employ a multi-scale dynamic feature space for efficient feature learning. Specif-
ically, we construct kernels of varying sizes to equip the model with different
receptive fields [11], and fuse the feature representations using the 1× 1 layer.

As illustrated in the left-bottom of Fig. 1, our dynamic kernel selection mech-
anism concatenates features from different receptive fields to obtain the com-
bined feature XA. We then utilize average and max pooling to extract spatial
information from the feature space. The extracted features, after concatenation,
are passed through a Conv layer, which expands the channel from 2 to N:

X ′
A = F2→N[AvgPool(XA)∥MaxPool(XA)] (5)

where [·∥·] denotes concatenation. Subsequently, we apply the Sigmoid activation
σ to obtain the weighted coefficient, which is then multiplied with P using the
following equation, enabling dynamic feature learning to weight P adaptively:

P ′ = FFCN [Mean(σ(XA
′))]⊙ P (6)

where⊙ denotes element-wise multiplication and FFCN means the fully-connected
layer. The obtained Conv3×3(P

′) is then propagated through the GPS module
for further correlation learning of the feature maps and prompt parameters.
Global Prompt Scanner. In the GPS module, the prompt parameter P ′ is
firstly concatenated with the input feature XIn, utilizing P ′ to guide the process
of luminance restoration:

XP = [XIn∥P ′] (7)
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Overexposed
Ground Truth FECNet MIRNetv2 PyDiff PromptIR LACT EndoUIC (Ours)

Underexposed
Ground Truth FECNet MIRNetv2 PyDiff PromptIR LACT EndoUIC (Ours)

Fig. 2. The visualization results and error maps of our EndoUIC against SOTA meth-
ods on the CEC dataset. We present the enhanced images by SOTA exposure correction
methods and their heat maps of reconstruction errors, with blue indicating lower errors
and red denoting higher errors.

The selective-scan mechanism of VMamba [13], which captures long-range
representations by scanning sequentially from four directions (top-left→ bottom-
right, bottom-right → top-left, top-right → bottom-left, bottom-left → top-
right), has proven to be an effective approach for learning visual representations.
To further enhance the global perception and foster the interaction between XIn

and P ′, we conduct the cross-scan on XP . In this case, the scans in the same
dimension as the concatenation can effectively facilitate the interaction between
P ′ and XIn, while the scans vertical to the concatenation dimension can promote
the internal representation learning within P ′ and XIn themselves.

The GPS module is presented in the right-bottom of Fig. 1(c). Features that
follow a skip connection are processed by a 1×1 Conv layer and a 3×3 Conv layer.
The combined feature is then fused with features from higher spatial dimensions
to facilitate the illumination restoration process of the overall model.

3 Experiments

3.1 Dataset

We conduct our experiments on two EC datasets and two LLIE datasets:
Capsule endoscopy Exposure Correction (CEC) dataset is collected by
ANKON magnetically controlled WCEs of three patients. The training set in-
cludes 800 images from two patients, and the test set contains 200 images from
another patient. The dataset comprises half overexposed and half underexposed
images. We invite expert photographers to simulate the camera aperture set-
tings with the Adobe Camera Raw SDK by adjusting exposure values (EVs).
Changing the exposure value is equivalent to changing the camera aperture size.
We render the raw image with varying numerical EVs to change the exposure
range of highlights and shadows, emulating real exposure mistakes.
Endo4IE dataset is a public synthetic EC dataset of conventional endoscopy [4].
It was created by initially selecting public images without exposure issues. Then,
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Table 1. EC comparison against existing and SOTA methods on our CEC dataset.

Methods FECNet [8] SID [7] DRBN [7] MIRv2 [29] LLCaps [2] PyDiff [31] PromptIR [18] LACT [1] PIP [12] EndoUIC

PSNR ↑ 28.78 24.29 26.83 28.36 27.55 28.18 28.27 28.40 25.01 29.65
SSIM ↑ 92.61 85.69 90.50 93.58 85.95 95.79 83.14 93.09 70.09 96.80
LPIPS ↓ 0.1048 0.2111 0.1452 0.1080 0.2366 0.0941 0.0717 0.1103 0.1527 0.0655

Table 2. EC comparison against existing and SOTA methods on the Endo4IE dataset.
‘*’ means we use the results from the previous works.

Methods LMSPEC* [4] LMSPEC+* [5] FECNet [8] MIRv2 [29] LA-Net [26] PyDiff [31] PromptIR [18] LACT [1] PIP [12] EndoUIC

PSNR ↑ 23.97 23.62 24.72 23.85 23.51 24.73 23.73 22.92 25.28 25.49
SSIM ↑ 80.34 79.97 81.84 82.33 83.78 84.78 79.57 76.88 81.94 85.20
LPIPS ↓ - - 0.2031 0.2376 0.1186 0.2148 0.2396 0.2671 0.2150 0.1937

CycleGAN [32] was applied to generate paired over & underexposed synthetic
images, and MSE and SSIM metrics were used to filter and finalize a dataset of
985 underexposed and 1231 overexposed images.
Kvasir-Capsule [21] and Red Lesion Endoscopy (RLE) [3] are originally
two datasets utilized for WCE disease diagnosis. Bai et al. [2] have curated
images from these datasets and synthesized two datasets specifically tailored for
WCE LLIE by applying random Gamma correction and illumination reduction.
Specifically, the Kvasir-Capsule dataset comprises 2000 training images and 400
test images. The RLE dataset contains 946 training images and 337 test images.

3.2 Implementation Details

The performance of our proposed EndoUIC is compared with a variety of state-
of-the-art (SOTA) LLIE and EC methodologies, which are listed in Table 1, 2,
3, and supplementary materials. For methods marked with ‘*’, we obtain re-
sults directly from previous works. For the remaining methods, we reproduce
the results through their official repositories. We conduct our experiments with
Python PyTorch on NVIDIA A100 GPUs. We train our model with Adam for
1000 epochs. The learning rate is set to 10−4. We evaluate the image enhance-
ment performance with Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). We
also follow the previous work [2] to conduct a downstream medical diagnosis task
on the RLE test set - the red lesion segmentation. The UNet [19] is trained using
Adam with 20 epochs and a learning rate of 10−4, and evaluated with mIoU.

3.3 Results

EC Comparison. As indicated in Tables 1 and 2, we initially perform the en-
doscopy exposure correction experiment in comparison with the existing SOTA
methods. Our approach successfully surpasses various methods with different
architectures (e.g., CNNs, Transformers, and DDPMs). Our method primarily
restores images at the pixel level, leading to top-1 results in PSNR and SSIM.
However, it falls behind LANet in feature perception quality, while our method
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Table 3. LLIE comparison with existing and SOTA solutions on the Kvasir-
Capsule [21] and RLE datasets [3]. The red lesion segmentation experiment is con-
ducted on the RLE test set [3] by following the previous work [2]. LLCaps* means we
use the results from the previous SOTA [2].

Methods LLCaps* [2] PIP [12] CFWD [25] Diff-LOL [9] LA-Net [26] CLE [27] PyDiff [31] PromptIR [18] EndoUIC

Kvasir-
Capsule

PSNR ↑ 35.24 33.60 35.88 33.60 30.84 26.55 35.07 33.54 36.85
SSIM ↑ 96.34 95.09 96.26 95.42 95.32 87.87 96.60 96.77 97.04
LPIPS ↓ 0.0374 0.0302 0.0467 0.0847 0.0562 0.0829 0.0364 0.0377 0.0255

RLE
PSNR ↑ 33.18 28.60 30.14 28.46 25.92 26.20 33.21 32.07 33.50
SSIM ↑ 93.34 87.27 90.25 82.52 85.72 81.42 93.54 93.30 93.99
LPIPS ↓ 0.0721 0.0977 0.1088 0.1437 0.1491 0.1134 0.0774 0.0694 0.0658

RLE Seg mIoU ↑ 66.47 59.46 51.47 62.46 52.57 45.33 62.56 59.92 68.97

Table 4. Ablation study of the proposed EndoUIC on the EndoUIC dataset. Specifi-
cally, we (i) replace the restoration DiT with the original U-Net architecture, (ii) remove
the API block, and (iii) remove the GPS block.

Diffusion Trans % ! % % ! ! % !

Prompt
API % % ! % ! % ! !

GPS % % % ! % ! ! !
PSNR ↑ 28.18 29.16 28.45 28.47 29.31 29.42 28.78 29.65
SSIM ↑ 95.79 95.81 96.49 96.60 94.92 95.73 96.21 96.80
LPIPS ↓ 0.0941 0.0735 0.858 0.0776 0.0710 0.0682 0.0727 0.0655

still ranks 2nd in LPIPS. Overall, our EndoUIC achieves the best results on
our self-proposed CEC dataset and the public Endo4IE benchmark. The visu-
alization of our image enhancement results and their corresponding error maps
are presented in Fig. 2, where blue indicates fewer errors. It is observable that
our method demonstrates the least errors and optimal results. Additionally, our
EndoUIC demonstrates the FLOPs number of 14.36M and a standard deviation
of 3.51 in PSNR on the CEC dataset. Future work will focus on enhancing the
inference speed and robustness of our proposed framework.
LLIE Comparison. We also compare our method with SOTA LLIE techniques
on two publicly available LLIE datasets, with the results presented in Table 3.
We demonstrate that our method still achieves excellent results even when only
one type of illumination degradation occurs. We also conduct a segmentation
experiment on red lesions following LLCaps [2], and the superior results further
prove the clinical applicability of our EndoUIC.
Ablation Study. In Table 4, we remove the API and GPS modules from the
prompt architecture, and revert the DiT back to the UNet architecture. In all
cases, we observed varying degrees of performance degradation, which further
proves the effectiveness of the proposed components.
Feature Clustering. We also observe the feature clustering of over & under-
exposed images in the CEC test set with t-SNE. After passing through the 1st,
2nd, and 3rd prompt blocks, the feature clustering between over & underex-
posed images became more distinct and better clustered (Davies-Bouldin Index
1.68 → 1.55 → 0.53). After removing the prompt blocks, we find worse clustering
results (2.24 → 1.94 → 1.87), indicating that the prompt block can help optimize
the feature clustering based on the discriminative illumination information.
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4 Conclusion

This paper presents EndoUIC, a promptable DiT model for unified illumina-
tion correction for WCE. The model’s ability to navigate through different re-
gions of the parameter space allows for tailored adjustments that address the
distinct challenges posed by either overexposed or underexposed images. Fur-
thermore, with the assistance of photographer experts, we customize the CEC
dataset tailored for the EC task in WCEs. Extensive experiments conducted
on four datasets demonstrate that our EndoUIC surpasses existing SOTA tech-
niques, validating its efficacy in performing endoscopic LLIE and EC tasks. Our
proposed approach can be integrated with clinical endoscopy systems, greatly
enhancing the visualization, diagnosis, screening, and treatment of GI diseases.
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5. Garćıa-Vega, A., Espinosa, R., Ramı́rez-Guzmán, L., Bazin, T., Falcón-Morales,
L., Ochoa-Ruiz, G., Lamarque, D., Daul, C.: Multi-scale structural-aware exposure
correction for endoscopic imaging. In: 2023 IEEE 20th International Symposium
on Biomedical Imaging (ISBI). pp. 1–5. IEEE (2023)

6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

7. Huang, J., Liu, Y., Fu, X., Zhou, M., Wang, Y., Zhao, F., Xiong, Z.: Exposure
normalization and compensation for multiple-exposure correction. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
6043–6052 (2022)



10 L. Bai et al.

8. Huang, J., Liu, Y., Zhao, F., Yan, K., Zhang, J., Huang, Y., Zhou, M., Xiong, Z.:
Deep fourier-based exposure correction network with spatial-frequency interaction.
In: European Conference on Computer Vision. pp. 163–180. Springer (2022)

9. Jiang, H., Luo, A., Fan, H., Han, S., Liu, S.: Low-light image enhancement with
wavelet-based diffusion models. ACM Transactions on Graphics 42(6), 1–14 (2023)

10. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for
unknown corruption. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 17452–17462 (June 2022)

11. Li, Y., Hou, Q., Zheng, Z., Cheng, M.M., Yang, J., Li, X.: Large selective ker-
nel network for remote sensing object detection. arXiv preprint arXiv:2303.09030
(2023)

12. Li, Z., Lei, Y., Ma, C., Zhang, J., Shan, H.: Prompt-in-prompt learning for universal
image restoration. arXiv preprint arXiv:2312.05038 (2023)

13. Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Liu, Y.: Vmamba:
Visual state space model. arXiv preprint arXiv:2401.10166 (2024)

14. Long, M., Li, Z., Xie, X., Li, G., Wang, Z.: Adaptive image enhancement based
on guide image and fraction-power transformation for wireless capsule endoscopy.
IEEE transactions on biomedical circuits and systems 12(5), 993–1003 (2018)

15. Ma, Y., Liu, Y., Cheng, J., Zheng, Y., Ghahremani, M., Chen, H., Liu, J., Zhao, Y.:
Cycle structure and illumination constrained gan for medical image enhancement.
In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020:
23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part
II 23. pp. 667–677. Springer (2020)

16. Moghtaderi, S., Yaghoobian, O., Wahid, K.A., Lukong, K.E.: Endoscopic image
enhancement: Wavelet transform and guided filter decomposition-based fusion ap-
proach. Journal of Imaging 10(1), 28 (2024)

17. Mou, E., Wang, H., Yang, M., Cao, E., Chen, Y., Ran, C., Pang, Y.: Global and
local enhancement of low-light endoscopic images (2023)

18. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: Promptir: Prompting for all-in-
one blind image restoration. arXiv preprint arXiv:2306.13090 (2023)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

20. Rukundo, O., Pedersen, M., Hovde, Ø., et al.: Advanced image enhancement
method for distant vessels and structures in capsule endoscopy. Computational
and mathematical methods in medicine 2017 (2017)

21. Smedsrud, P.H., Thambawita, V., Hicks, S.A., Gjestang, H., Nedrejord, O.O.,
Næss, E., Borgli, H., Jha, D., Berstad, T.J.D., Eskeland, S.L., et al.: Kvasir-capsule,
a video capsule endoscopy dataset. Scientific Data 8(1), 142 (2021)

22. Wang, G., Bai, L., Wu, Y., Chen, T., Ren, H.: Rethinking exemplars for contin-
ual semantic segmentation in endoscopy scenes: Entropy-based mini-batch pseudo-
replay. Computers in Biology and Medicine 165, 107412 (2023)

23. Wang, L., Yang, Q., Wang, C., Wang, W., Pan, J., Su, Z.: Learning a coarse-to-
fine diffusion transformer for image restoration. arXiv preprint arXiv:2308.08730
(2023)

24. Wang, L., Wu, B., Wang, X., Zhu, Q., Xu, K.: Endoscopic image luminance en-
hancement based on the inverse square law for illuminance and retinex. Interna-
tional Journal of Medical Robotics and Computer Assisted Surgery 18(4), e2396
(2022)



EndoUIC: Unified Illumination Correction in Capsule Endoscopy 11

25. Xue, M., He, J., He, Y., Liu, Z., Wang, W., Zhou, M.: Low-light image enhancement
via clip-fourier guided wavelet diffusion. arXiv preprint arXiv:2401.03788 (2024)

26. Yang, K.F., Cheng, C., Zhao, S.X., Yan, H.M., Zhang, X.S., Li, Y.J.: Learning to
adapt to light. International Journal of Computer Vision 131(4), 1022–1041 (2023)

27. Yin, Y., Xu, D., Tan, C., Liu, P., Zhao, Y., Wei, Y.: Cle diffusion: Controllable
light enhancement diffusion model. In: Proceedings of the 31st ACM International
Conference on Multimedia. pp. 8145–8156 (2023)

28. Yue, G., Gao, J., Cong, R., Zhou, T., Li, L., Wang, T.: Deep pyramid network
for low-light endoscopic image enhancement. IEEE Transactions on Circuits and
Systems for Video Technology (2023)

29. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao,
L.: Learning enriched features for fast image restoration and enhancement. IEEE
transactions on pattern analysis and machine intelligence 45(2), 1934–1948 (2022)

30. Zhang, Y., Bai, L., Liu, L., Ren, H., Meng, M.Q.H.: Deep reinforcement learning-
based control for stomach coverage scanning of wireless capsule endoscopy. In: 2022
IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 01–06.
IEEE (2022)

31. Zhou, D., Yang, Z., Yang, Y.: Pyramid diffusion models for low-light image en-
hancement. arXiv preprint arXiv:2305.10028 (2023)

32. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: IEEE International Conference on
Computer Vision (2017)


	EndoUIC: Promptable Diffusion Transformer for Unified Illumination Correction in Capsule Endoscopy

