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Abstract. Examining pathology images through visual microscopy is
widely considered the most reliable method for diagnosing different medi-
cal conditions. Although deep learning-based methods show great poten-
tial for aiding pathology image analysis, they are hindered by the lack of
accessible large-scale annotated data. Large text-to-image models have
significantly advanced the synthesis of diverse contexts within natural
image analysis, thereby expanding existing datasets. However, the vari-
ety of histomorphological features in pathology images, which differ from
that of natural images, has been less explored. In this paper, we propose a
histomorphology-focused pathology image synthesis (HistoSyn) method.
Specifically, HistoSyn constructs instructive textural prompts from spa-
tial and morphological attributes of pathology images. It involves an-
alyzing the intricate patterns and structures found within pathological
images and translating these visual details into descriptive prompts. Fur-
thermore, HistoSyn presents new criteria for image quality evaluation fo-
cusing on spatial and morphological characteristics which have a stronger
correlation to the performance of down-stream tasks. Experiments have
demonstrated that our method can achieve a diverse range of high-quality
pathology images, with a focus on histomorphological attributes. The
code is available at https://github.com/7LFB/HistoSyn.
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1 Introduction

Pathology image analysis is widely regarded as the gold standard for diagnos-
ing various medical conditions, such as liver cancer [23] and breast cancer [21],
due to its ability to provide visual evidence at the cellular level. The intricate
tissue structures in pathology images pose considerable challenges for patho-
logical diagnosis due to variability among observers and the subtle histological
differences [10,12]. In addition, the growing number of patients has significantly
burdened the current medical system [29].

AI-based methods emerge as a promising alternative to augment the diagnos-
tic process with more cost-effective, and capable of handling high patient volumes

https://github.com/7LFB/HistoSyn
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without compromising diagnostic accuracy [13,25,27,28]. Utilizing deep-learning-
based methods necessitates extensive datasets with annotations, which presents
a significant challenge in the medical domain. Collecting large datasets for ef-
fective training can be quite costly. Recently, the synthesis of images has shown
great potential in generating natural images [1, 11, 22]. Generative Adversarial
Networks (GANs) [6] have shown promise in generating realistic images [2, 16],
but they are also prone to mode collapse and training instability. The latent
diffusion model (LDM) [18] is known for generating high-resolution synthetic
images a wider range of context based on text prompts.

When applying existing diffusion-based methods to synthetic pathology im-
ages, the model may suffer from low diversity and quality due to the distinct dif-
ference between nature images and pathology images. The diversity in nature im-
ages emphasizes the same subject in different scenes, poses, and views [3,14,19].
However, the diversity in pathology images emphasizes the same diagnosis with
different spatial distributions among tissue/cellular structures, various histolog-
ical findings in size, and shape [26, 27]. [15, 17] solely focused on studying mor-
phological attributes indirectly without specifying quantitative attributes. How
to effectively enhance and assess the synthesis pathology image with a focus on
histomorphology attributes has been rarely explored.

Our main insight is to explore histomorphological attributes in a similar
manner to that of pathologists when analyzing pathological images as follows:

• How to define the diversity in pathology images? Generating syn-
thetic pathology images requires a process that ensures both diversity and
realism in the data. To define diversity in pathology images, one must con-
sider the range of variations in tissue architecture, cell morphology, staining
patterns, and disease manifestations that are representative of the real-world
variability seen in human tissues. This requires a deep understanding of the
pathological conditions being modeled and the associated histomorphological
features that are critical for accurate diagnosis.

• How to evaluate the quality of synthetic pathology image dataset?
The quality evaluation should encompass a diverse range of histomorpho-
logical attributes, including but not limited to spatial attributes (e.g., cel-
lular structure, tissue organization), and morphological features (e.g., area).
A higher quality synthesized image should closely mirror those of the real
dataset with respect to the specific histomorphology attribute distribution.

In this paper, we propose a histomorpholoy-focused pathology image synthe-
sis method (HistoSyn). HistoSyn specifically explores spatial and morphological
attributes customized for pathology images and converts these visual cues into
prompts for pathology image synthesis. Furthermore, we introduce a new eval-
uation metric to assess the quality with respect to the spatial and morphology
attributes. This new metric aims to quantify the histomorphological attributes
that are crucial for accurate diagnosis and provide an interpretable angle of view
to evaluate synthetic pathology image dataset. Our contributions are:

• We propose a method for synthesizing pathology images with a focus on
histomorphology. The proposed method enhances image synthesis by in-



HistoSyn 3

corporating a wide range of histomorphology attributes depicted through
statistical measures.

• We design a new reliable metric to assess the quality of synthetic pathology
images based on histomorphology attributes.

• Experiment results demonstrate the effectiveness of our method where the
synthesized images help improve the overall classification accuracy. The new
metric also shows a stronger correlation to the performance.

2 Proposed Method

Overview. Figure 1 illustrates our proposed histomorphology-focused pathology
image synthesis and evaluation method. The image synthesis procedure consists
of a histomorphology-focused prompting module and a base Latent Diffusion
Model (LDM) [18] including the Variational Autoencoder {E ,D}, the U-Net
denoiser ϵθ, and the text encoder τθ. Given a training image x, the training
procedure of LDM is achieved by minimizing the true noise ϵ and predicted
noise ϵθ conditioned on text prompts y:

L = EE(x),ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y))||22] (1)

When the model is well-trained, we can generate synthetic pathology images
by forwarding a random noise latent variable zt along with the user-provided
conditioned text prompt y:

x̂ = D(ϵθ(zt, t, τθ(y))), zt ∼ N (0, 1) (2)

The key to generating high-quality images lies in enriching their diversity through
text prompts y which describe the tailored histomorphology attributes.

2.1 Histomorphology-Focused Prompting

In this section, we will explore how to effectively describe the histomorphological
attributes specific to pathology images in order to generate more varied and
realistic images. Drawing inspiration from pathologists, we analyze spatial and
morphological attributes. Given a pathology image x, it is firstly fed into a tissue
segmenter Seg to get main objects (e.g., nuclei, fat droplets) O = {o1, o2, . . . , oN}
observed in the pathology images.

O = Seg(x) (3)

Then, we perform quantitative analysis focusing on spatial and morphological
attributes described by statistical measures.
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Fig. 1: Overview of the proposed histomorphology-focused pathology image syn-
thesis (a) and evaluation metric (b). It enriches the text prompt by incorporating
histomorphology attributes specific to pathology images. The quality evaluation
is conducted based on the distribution of its histomorphological attributes.

Spatial attributes. The spatial arrangement of objects in a pathology image is
crucial for accurate diagnosis. Based on the K-function [5], which is a statistical
measure that assesses the displacement of objects oi and oj within a certain
distance r, assisting in the analysis of the image:

K(r) =
1

λ
πr2(

∑
oi,oj∈O

Jd(oi, oj) ≤ rK)2 (4)

where J·K returns 1 if the input is true. The symbol λ represents a constant, and
the distance function d calculates the Euclidean distance between two objects.
Different choices of objects result in different K-functions. Then l-th kind of
spatial attributes al of image x depicted by K-function can be expressed by the
average distance:

al =

dmax∑
r=0

K(r) ∗ r

dmax∑
r=0

K(r)

(5)

Morphology attributes. The morphological attributes are utilized for measuring
and analyzing the shape, size of objects oi observed in image x. Without loss
of generality, we denote ϕ as the k-th kind of attribute calculator. Then, the
morphological attribute ak of image x can be defined as the average attribute
across all observed objects:

ak =
1

N

N∑
i=1

(ϕ(oi)) (6)
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After analyzing the spatial and morphological attributes specific to the objects
observed in the pathology images, a comprehensive quantitative assessment of
pathology images x can be obtained using attribute sets Attr = [a1, . . . , aM ],
where M represents the number of attributes being considered.

2.2 Histomorphology-Focused Evaluation Metric

The quality evaluation should delve into the intricate analysis of tissue structures
and cellular details, emphasizing the significance of histomorphological examina-
tion in diagnosing various diseases. The cell size, shape, and spatial distribution
which are indicative of pathological conditions are analyzed and formed as eval-
uation metric to identify abnormalities.

Given two sets of l-th attribute values, A = {al1, al2, . . . , aln} obtained from
the real dataset X, and B = {bl1, bl2, . . . , blm} obtained from the synthetic dataset
X̂, we choose the the Wasserstein distance [20] to measure of the discrepancy
between the two distributions that these lists represent. we first need to construct
the cumulative distribution functions (CDFs) of both lists. Let FA(x) and FB(x)
be the CDFs of lists A and B, respectively. The Wasserstein distance of order p
between A and B is defined as:

HistDl :=

(∫ ∞

−∞
|FA(x)− FB(x)|pdx

) 1
p

(7)

When considering Nattr kinds of attributes, the overall distance can be calculated
simply by taking the average between all attribute distances:

HistD =
1

Nattr

Nattr∑
l=1

HistDl (8)

The resulting Wasserstein distance will provide insight into how well the syn-
thetic images replicate the spatial or morphological characteristics of the real
images. A smaller Wasserstein distance indicates a closer match between the
two distributions and, consequently, a higher quality of the synthetic dataset
in mirroring real histomorphology attributes. It enables the assessment of his-
tomorphological attribute diversity and provides an interpretable method for
image synthesis.

3 Experimental Results

3.1 Experiment Settings

We assessed the performance using Liver-NAS dataset [30], which contains
image tiles extracted from WSIs with corresponding labels indicating histological
findings. Experiments are conducted using 5-fold cross-validation and the average
performance is reported. Only 10% of the training data was used to simulate low
data availability in the medical field, with a 1:1 ratio of real to synthetic data.
Details of the dataset are in the supplementary materials.
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Table 1: Comparison of recognition performance using F1 score.
Methods Others Inflammation Ballooning Steatosis Macro-Average

Baseline [18] 82.42±1.49 82.10±2.13 68.80±4.37 94.74±1.22 82.01±1.77
Morph [17] 83.23±1.31 81.99±2.91 79.45±3.77 96.26±0.34 85.24±1.50
Ours 84.11±2.68 85.75±1.47 81.11±4.31 95.90±1.36 86.72±1.78

Evaluation metrics. For classification experiments, we choose F1 score as our
performance metric. To evaluate the quality of synthesized images, we utilized
the widely recognized metric Frechet Inception Distance (FID) [9]. Additionally,
we assessed the quality through the proposed metric that measures the similarity
between the distributions of real and synthetic data, focusing specifically on
spatial or morphological attributes.

Training details. We finetune the latent diffusion model (LDM) [19] for pathol-
ogy image synthesis. All models were obtained from the HuggingFace model
repository [24]. We used the checkpoint version 1.5 (runwayml/stable-diffusion-
v1-5). We only fine-tuned the denoiser module ϵθ while keeping both the VAE
and CLIP models frozen. As for the downstream task, we choose ResNet-50 [8]
as the backbone for training. We use HoVer-Net [7] for nuclei segmentation. In
H&E stained pathology images, white regions indicate the presence of fatty cells
or vessels. Two types of objects are considered (nuclei and white regions), with
a total of M = 7 histomorphological attributes (defined in Supp.), resulting in
7 evaluation metrics HistD1, ...,HistD7. When fine tune the Latent Diffusion
Model (LDM) [18], we employs a learning rate of 5×10−5 with maximum 400
steps. The batch size is 4. After training, each prompt is used to generate one
image. When training ResNet-50, we adhered to the standard training scheme
outlined in [8].

3.2 Comparison with SOTA Methods

We finetune LDM [18] with a vanilla label prompt as the baseline. We also
compare our method with Morphology-enriched (Morph) [17], which enriched
the prompt with morphology type information learned from k-means clustering.

Histological findings recognition. Table 1 presents the F1 scores for various ap-
proaches in identifying histological findings. Our approach achieves the highest
macro-average F1 score of 86.72. The ’Baseline’ method shows consistent per-
formance but dips to 68.80 in Ballooning. The ’Morph’ method improves in
the ’Others’ category (83.23) but lags in Inflammation and Ballooning, with a
macro average of 85.24. Our method excels in Inflammation (85.75) and Bal-
looning (81.11), and scores 95.90 in Steatosis. This demonstrates the benefits of
incorporating quantitative attributes, achieving the highest overall performance.
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Fig. 2: Our method excels in synthesizing pathology images by capturing diverse
histomorphological attributes, such as white region areas and the spatial ar-
rangement of surrounding nuclei, while preserving essential histological findings
like inflammation (accumulated nuclei), ballooning (distorted cells), and steato-
sis (fatty cells) without mixing them in ‘Others’.

3.3 Quality Evaluation of Synthesis Image

We use visual inspection and quantitative analysis to determine how faithfully
the synthesized imagery represents real datasets.

Quantitative analysis. Table 2 shows that the HistoSyn method outperforms
others in both FID and HistD scores. HistoSyn achieves an FID of 3.17, sig-
nificantly lower than the Baseline (4.75) and Morph method (4.23), indicating
greater similarity to real images. The mean values for the distribution of real
versus synthetic data across the 7 attributes are as follows: 103.6 (real) vs 117.2
(synthetic), 121.1 (real) vs 123.1 (synthetic), 111.2 (real) vs 124.1 (synthetic),
118.1 (real) vs 124.4 (synthetic), 1791.3 (real) vs 1611.4 (synthetic), 0.6 (real) vs
0.7 (synthetic), and 69.0 (real) vs 72.2 (synthetic). For the metric HistD, which
calculates the difference between the distributions, HistoSyn scores 27.55, which
is better than the Baseline’s 38.08 and the Morph method’s 56.44. These results
demonstrate HistoSyn’s superior ability to generate high-fidelity histological im-
ages, closely approximating real image quality.

Visual comparison. Figure 2 demonstrates the synthesis images using different
methods. Different methods reveal distinct characteristics. The ’Baseline’ im-
ages, while somewhat resembling real histology images, lack the nuanced mor-
phological details present in the ’Real’ column. The ’Morph’ images show an
improvement in structural detail, suggesting a more sophisticated approach to
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Table 2: Evaluation on the quality of synthetic images.
Methods FID ↓ HistD (Eq 8) ↓

Baseline [18] 4.75±1.17 38.08±14.81
Morph [17] 4.23±0.82 56.44±21.35
HistoSyn (Ours) 3.17±0.73 27.55±8.90

Fig. 3: The Pearson correlation coefficients between various evaluation metrics
and the recognition performance of different histological findings.

synthetic image generation that better captures the complexity of biological tis-
sue. Most notably, the ’HistoSys (Ours)’ column presents images that are closer
to the ’Real’ samples, with a clear enhancement in the diversity of the tissue
structures depicted.

3.4 Quality Metrics and Performance Correlation.

We evaluate the proposed quality metric and FID to see which better represents
the quality of generated images and correlates more strongly with downstream
task performance. We use the Pearson correlation coefficient [4] to assess the
relationship between quality metrics and classification task performance.

As shown in Figure 3, the proposed metric provides a stronger indication of
performance in recognizing histological findings compared to the FID metric. A
lower FID, despite positive Pearson correlation, indicates realistic images but
doesn’t aid downstream tasks, unlike HistD, which helps recognize inflammation
and ballooning.
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4 Conclusion

In this paper, we propose a histomorphology-focused image synthesis method
(HistoSyn) to enable high-quality pathology image generation. HistoSyn enriches
the prompts with the histomorphology attributes and guides the synthesis pro-
cess, ensuring that the generated images maintain important diagnostic features.
We also introduce new criteria for image quality evaluation focusing on spatial
and morphological characteristics which have a stronger correlation to the clas-
sification performance.
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