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Abstract. Superficial white matter (SWM) U-fibers contain consider-
able structural connectivity in the human brain; however, related studies
are not well-developed compared to the well-studied deep white matter
(DWM). Conventionally, SWM U-fiber is obtained through DWM track-
ing, which is inaccurate on the cortical surface. The significant variability
in the cortical folding patterns of the human brain renders a conven-
tional template-based atlas unsuitable for accurately mapping U-fibers
within the thin layer of SWM beneath the cortical surface. Recently, new
surface-based tracking methods have been developed to reconstruct more
complete and reliable U-fibers. To leverage surface-based U-fiber tracking
methods, we propose to create a surface-based U-fiber dictionary using
high-resolution diffusion MRI (dMRI) data from the Human Connectome
Project (HCP). We first identify the major U-fiber bundles and then
build a dictionary containing subjects with high groupwise consistency
of major U-fiber bundles. Finally, we propose a shape-informed U-fiber
atlasing method for robust SWM connectivity analysis. Through exper-
iments, we demonstrate that our shape-informed atlasing method can
obtain anatomically more accurate U-fiber representations than state-
of-the-art atlas. Additionally, our method is capable of restoring incom-
plete U-fibers in low-resolution dMRI, thus helping better characterize
SWM connectivity in clinical studies such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).
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1 Introduction

Superficial white matter (SWM) U-fibers play an essential role in analyzing the
structural connectivity in the human brain [3,11]. Compared to well-studied
deep white matter (DWM), however, there are much fewer studies focusing on
SWM due to their anatomical variability in the complicated cortical folding
patterns [9]. Many previous works on SWM rely on conventional volume-based
fiber tracking methods [21, 20] and utilize the well-known methods and tools [1, 7]
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Fig. 1. An illustration of surface-based U-fiber tracking and their spherical representa-
tion for an HCP subject (Subj ID: 100206). (a) White matter cortical surface and sulcal
patches. (b) Whole-brain U-fiber tractography generated by surface-based tracking. (c)
The registered spherical representation of U-fibers of the left hemisphere.

from DWM studies. Recently, surface-based tracking methods [18, 14] have been
proposed that allow us to reconstruct U-fibers with higher fidelity to cortical
anatomy. Building upon novel surface-based tracking methods, we propose in
this work a novel shape-informed atlasing method of U-fibers that can advance
the analysis of U-fiber connectivity in clinical diffusion MRI.

There have been a lot of efforts in building a compact and reliable SWM atlas
and utilizing such atlas to enhance our understanding of SWM in the past few
years. Roman et al. [17] proposed an automatic method for the representative
SWM bundles for the whole brain. They report that their atlas outperforms their
previous atlas in [15], as well as the atlas [10] and the SWM bundles in Zhang et
al.’s atlas [25]. Roman et al. found that certain SWM bundles’ dMRI measures
are correlated with the cognitive impairment for Alzheimer’s Disease [16]. Xue et
al. [24] utilized Zhang et al.’s atlas and proposed a deep learning method for the
consistent SWM parcellation task. These works employ volume-based tracking
methods, which may not be suitable for accurately capturing the complicated
cortical folding patterns and U-fiber connections. Conventional atlasing methods
usually represent the average U-fibers across subjects and do not account for
individual variability in cortical folding patterns. A more personalized strategy
could help accurately describe the cortical-cortical U-fiber connections.

In this work, we propose a novel surface-based and shape-informed U-fiber
atlasing method for robust SWM connectivity analysis. We use the surface-
based tracking method [14] and the spherical representation of U-fibers to build
our dictionary and method. We first identify 77 major U-fiber bundles on a
cohort of HCP subjects with high groupwise consistency to form the dictionary.
After that, we draw shape-informed references from the dictionary to develop
our atlasing method that can generate high-quality U-fiber representations on
new subjects. We compare our atlasing approach with a previous SWM atlas [17]
and demonstrate the effectiveness of our proposed method in terms of anatomical
accuracy and integrity of U-fibers. Through experiments, we show that our shape
similarity indeed captures the geometric information of the cortical surface, and
our shape-informed atlasing method outperforms the conventional volume-based
method. The application of our atlasing method in low-resolution dMRI data
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from ADNTI further demonstrates that our method can more successfully detect
SWM connectivity changes in Alzheimer’s disease.

2 Method

In this section, we first present the method for U-fiber dictionary construction
using surface-based fiber tracking on high-resolution HCP data. After that, we
propose our shape-informed approach for personalized atlasing of U-fiber bundles
that can be applied to low-resolution dMRI data in clinical studies.

2.1 Surface-based U-fiber dictionary construction

Major U-fiber bundles identification: We use the surface-based tracking [14]
and spherical registration method [6] to compute the registered spherical repre-
sentation of U-fibers [12] as shown in Fig. 1. To identify the major U-fibers, we
use the Desikan atlas [5] to set up a list of valid regions of interest (ROIs). For a
tract, it connects to either two ROIs or different parts within a single ROI. We
can assign labels for every subject’s U-fibers by recording the cortical labels of
triangles corresponding to a tract’s start point and end point. QuickBundle [§]
is used to cluster the tracts and discard small clusters in the same pair of ROIs
for every subject. We use an adaptive way to grid search proper QuickBundle
thresholds for different ROIs. Fig. 2 (a-c) shows an example of results based on
the threshold from grid search as compared to those from an overly small and
large threshold. After this intra-subject clustering, we obtain the cluster cen-
troids of each pair of ROIs for every subject. Then, we choose the pair of ROIs,
which defines the U-fiber bundle, that has valid connections in more than half
of the total subjects as identified major U-fiber bundles.

Dictionary of major U-fiber bundles with groupwise consistency:
We aim to build a dictionary of U-fiber bundles with groupwise consistency
across a cohort of HCP subjects for robust connectivity analysis. We retain the
major U-fiber bundles at the subject level as identified in the previous section
and perform another layer of QuickBundle clustering on the remaining clus-
ter centroids. Unlike the previous intra-subject clustering, we believe that most
of the centroids represent a number of valid tracts at the subject level. Here,
we aim to find the most consistent centroids at the group level. A hierarchi-
cal density-based clustering method [2] is used to first identify the disconnected
components of the centroids and then choose a proper QuickBundle thresh-
old. After this inter-subject clustering, we discard small clusters as shown in
Fig. 2 (d-f) and define the U-fiber’s groupwise consistency as Eflu:l (Mcr/Mct),
where M is the number of major bundles we identified, M, is the remain-
ing centroids of major bundle and M, is the total centroids of major bundle.
We can then rank all subjects based on the groupwise consistency of their U-
fiber bundles and choose a subset of high groupwise consistency to form our
dictionary of high-quality surface-based U-fiber bundles.
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(d) (f)

Fig. 2. Intra-subject and inter-subject clustering of U-fibers. For intra-subject cluster-
ing, results based on threshold from grid search, an overly small and large threshold
are shown in (a), (b), and (c), respectively. In (a)-(c), blue: curves to be clustered;
green: cluster centroids to keep; red: cluster centroids to remove. We show results for
inter-subject clustering on (d) motor sensory U-fiber, (¢) middle temporal to supe-
rior temporal U-fiber, and (f) U-fiber within the lateral occipital region. In (d)-(f),
blue: centroids from clustering results for all HCP subjects; green: centroids with high
inter-subject consistency; red: centroids with low inter-subject consistency.

2.2 Shape-informed atlasing of U-fibers from dictionary

Building upon the dictionary of U-fiber bundles, we develop a personalized ap-
proach to maximize the match of the geometric information of the cortical folding
patterns. We use the patch-based matching methods in [26] to rank the shape
similarity between sulcal patches of the subjects in the dictionary and a given
test subject. Following the gyral/sulcal segmentation in [19], a sulcal patch can
be defined as the set of vertices segmented as the sulcal area in a certain cor-
tical ROI. The shape similarity score (SS) between patch i and j is defined as
—(0.5 % Dy2 (H, Hi*) + 0.5 % D2 (H*, H3")),

where D, is the chi® distance, H' and H;® are histograms of distance
transform(dt) [26] and shape index(si) of patch i. We can then choose a subset
of subjects within the dictionary with the most similar cortical patches and
compare their U-fiber bundles (BUAN score from [4]) with the corresponding
U-fiber bundle of the test subject.

Next, we develop a shape-informed atlasing process to identify and project
U-fiber bundles from the dictionary onto a given surface patch of a new subject.
First, the new subject’s cortical surface is mapped and registered to the spherical
template of FreeSurfer. Second, dictionary subjects with the closest SS scores are
identified together with their U-fiber bundles in matched sulcal patches. Third,
we pull-back the identified U-fiber bundles from dictionary subjects back to the
sulcal patch of the new subject using the composition of their spherical mapping
and registration to the template space. This will generate the atlasing U-fibers
in the original 3D image space of the cortical surface.
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Fig. 3. Visualization of intra-ROI and inter-ROI U-fiber bundles of a HCP subject
(subject ID: 133928) in our dictionary.

3 Experiment and evaluation

3.1 Dataset

Two publicly available datasets were used in this study. Human Connectome
Project (HCP) dataset [23] with T1-weighted MRI images (isotropic 0.7 mm)
and multi-shell dMRI images (isotropic 1.25 mm, b values = 1000, 2000, 3000
s/mm? ) was used to build the dictionary. Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset [13] with T1-weighted MRI images (isotropic 1.0 mm)
and single-shell dMRI images (isotropic 2.0 mm, b value = 1000 s/mm?) was
used to evaluate our shape-informed atlasing method.

3.2 Dictionary creation

755 HCP subjects were used in this study to build our dictionary. The fiber orien-
tation distribution (FOD) reconstruction was computed using method [22]|. The
tractography was generated using surface-based probabilistic tracking method [14].
For this tracking method, we randomly sampled 30 times at each triangle within
the sulcal patch of the white matter triangular meshes. We set the step size to
be 0.1lmm with a maximum angular threshold of 10 degrees between steps. Our
U-fiber tracking results contain approximately 60000 tracts per hemisphere for
every HCP subject. In total, we identified 77 stable U-fiber bundles for intra- and
inter-ROI connections. A complete list of these 77 U-fiber bundles is in table 1.
After evaluating inter-subject groupwise consistency, we rank all HCP subjects
and choose the top 300 subjects and their U-fiber bundles as our dictionary. As
an illustration, representative major U-fiber bundles of one HCP subject in our
dictionary are plotted in Fig. 3. We will release this dictionary publicly to the
research community together with our shape-informed atlasing method.

3.3 Shape-informed U-fiber atlasing evaluation and application

Comparison with previous atlas: To compare with the state-of-the-art SWM
atlas R from [17], we first show qualitative results. Atlas R’s whole brain U-fibers
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Table 1. We have 23 intra-ROI and 54 inter-ROI bundles in our dictionary. Abbre-
viation for this table: Bankssts (Ba), Caudal middle frontal (CMF), Cuneus (Cu),
Entorhinal (En), Fusiform (Fu), Inferior parietal (IP), Inferior temporal (IT), Lateral
occipital (LO), Lateral orbitofrontal (LOF'), Lingual (Li), Medial orbitofrontal (MOF),
Middle temporal (MT), Parahippocampal (PH), Paracentral (PC), Pars opercularis
(POp), Pars orbitalis (POr), Pars triangularis (PTr), Postcentral (PoC), Precentral
(PrC), Precuneus (PrCu), Rostral middle frontal (RMF), Superior frontal (SF), Supe-
rior parietal (SP), Superior temporal (ST), Supramarginal (SM), Transverse temporal
(TT), Insula (In). LH and RH in the bracket indicate that this major U-fiber only

occurs in one hemisphere.

Intra Intra Inter Inter Inter Inter
Ba - Ba |PeCa - PeCa| Ba-IP Fu - Li Li - PeCa PoC - SP
CMF - CMF| PoC - PoC Ba - MT Fu-PH |Li- PrCu(LH)|PoC - ST(LH)
Cu - Cu PrC - PrC Ba - ST IP - LO MOF - SF PoC - SM
Fu-Fu [PrCu- PrCu| CMF - POp IP - MT MT - ST PrC - SF
1P - IP RMF - RMF| CMF - PrC IP - SP MT - SM(LH) PrC - In
IT-IT SF - SF |CMF - RMF IP - SM PC - PrCu PrCu - SP
LO - LO SP - SP CMF - SF IT - LO PC - SF RMF - SF
LOF - LOF ST - ST Cu-LO IT - MT POp - PTr SP - SM
Li-Li SM - SM | Cu - Li(LH) LO - Li POp - PrC ST - SM
MOF - MOF Cu - PrCu LO - MT POp - RMF ST -TT
MT - MT Cu - SP LO - SP POp - In ST - In
PC - PC En - PH(LH)| LOF - POr POr - PTr SM - TT
POp - POp Fu-IT |LOF - In(RH)| PTr- RMF
PTr - PTr Fu - LO Li- PH PoC - PrC

is a collection of U-fibers from HCP subjects in a Montreal Neurological Institute
(MNI) space. To use atlas R, one must register a new subject into MNI space or
warp altas R into individual space. Fig. 4 (a, b) shows a clear mismatch of the
cortical surface with the warped motor-sensory U-fibers from atlas R. On the
other hand, our shape-informed atlasing method can generate U-fibers aligned
very well with the subject’s cortical surface mesh (Fig. 4 (d)) almost to the same
degree as those generated directly from surface-based tracking (Fig. 4 (c)). For
the quantitative comparison, U-ratio [14] (the Euclidean distance between the
start and end point of a tract divided by tract length) is computed to measure
the shape of U-fibers. The mean U-ratio for whole brain U-fibers of the atlas
R is 0.56, while the mean U-ratio of tracts in our proposed dictionary is 0.34,
which suggests our dictionary provides more plausible U-shaped fibers.
Advantage of our shape-informed U-fiber atlasing method: In Fig. 5(a),

the patch with high shape similarity is indeed more similar than the patch with
low shape similarity visually. To demonstrate the advantage of our method, we
use 80 HCP subjects with valid U-fibers as the test set, and we use the dictionary
set as the template set. For simplicity, we only use left motor-sensory U-fibers for
next experiments. We first rank the shape similarity of motor-sensory patches
between the template set and test set. For one test subject, we obtain the most
similar 3 and least similar 3 template subjects based on shape similarity and com-
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Fig. 4. Comparison of U-fibers from different atlasing methods. (a) Whole brain U-
fibers in the atlas R. (b) Overlay of the warped motor-sensory U-fibers from atlas R
with the white matter cortical surface of a test HCP subject (subject ID: 172938). (c)
U-fiber generated by surface-based tracking using the FOD of the same subject. (d)
U-fibers were obtained from our shape-informed atlasing method.
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Fig. 5. Quantitative demonstration of the advantage of our shape-informed atlasing
method for motor-sensory patches. (a) The SS scores displayed over patches 2 and
3 match well with their geometric similarity to patch 1 from the test HCP subject
(subject ID: 172938). Patch 2 is more similar to patch 1, hence it has a higher SS score
than patch 3. (b) U-fiber similarity from reference U-fibers with lowest and highest
shape similarity as measured on the sphere. (c) The first two box plots show the same
U-fiber similarity measured after warping all U-fibers to the MNI space. The right-most
box shows the U-fiber similarity measured after we pull-back reference U-fibers with
the highest shape similarity to the cortex of the test subject using our atlasing method.

pute the corresponding U-fiber similarity on the sphere. As shown in Fig. 5(b),
there is a group difference in U-fiber similarity on the sphere between patches
with the most and least similar shapes. The same procedure is applied to U-fibers
on volume in MNI space between the template set and the test set. For compar-
ison, We calculated the U-fiber similarity in volume between U-fiber from our
method and U-fibers from test subjects. The group difference of U-fiber similar-
ity in volume between most and least shape similar shows that patch similarity
positively correlates with U-fiber similarity in volume in Fig. 5(c). Addition-
ally, U-fibers from our atlasing show higher similarity to the test subject than
volume-based registered U-fibers, demonstrating the advantage of our method.
Robust SWM connectivity analysis in low-resolution ADNI data:
For ADNI dMRI data with much lower resolution than HCP, it is often challeng-
ing to generate reliable and robust whole brain SWM tractography even with
surface-based fiber tracking. To quantitatively describe the poor performance of
U-fiber in ADNI data, we compute a cortical surface coverage measure by divid-



8 Y. Li et al.

ing the number of triangles touched by U-fibers by the total number of triangles
in a given cortical region. As shown in Fig. 6 (a, b), our dictionary subjects from
HCP have much higher coverage than ADNI subjects in both precentral and
postcentral cortical regions. With our shape-informed atlasing method, we can
obtain a more complete representation of the U-fibers as shown in Fig. 6 (c, d).

Coverage
Coverage

HCP CN MCI AD HCP CN MCI AD
Precentral region Postcentral region

(a)

Fig. 6. Shape-informed atlasing provides a more complete representation of U-fibers
in subjects with incomplete U-fibers. (a) and (b) show the coverage of our dictionary
subjects from HCP in the precentral and postcentral cortical region as compared to
those from ADNI (CN, MCI, and AD subjects). (c,d) are examples from ADNI with
incomplete U-fibers on the left and U-fibers from our method on the right. (c) is a CN
subject (subject ID: 003 S 4441), (d) is an AD subject (subject ID: 011 S 6303).

Table 2. P-values for comparing motor-sensory SWM connectivity: CN vs AD.

CN vs AD : subjects with incomplete U-fibers|FA MD RD
U-fibers from tractography 0.4002 |0.7788 |0.8778
U-fibers from our atlasing method 0.3629 |0.01861 [0.01712
CN vs AD: all subjects FA MD RD
U-fibers from tractography 0.5240 ]0.07622 |0.2162
U-fibers from our atlasing method 0.006397|4.062e-05]0.01293

‘We compute common micro-structural measures including fractional anisotropy
(FA), mean diffusivity (MD) and radial diffusivity (RD) to compare the SWM
connectivity between the CN (n = 495) and AD (n=79) group in the ADNI
dataset. We first identified 134 CN subjects and 20 AD subjects with less than
2000 tracts in motor-sensory U-fiber from surface-based tracking, which we con-
sider incomplete. As shown in Table 2, the micro-structural measures on the re-
constructed U-fibers are statistically insignificant between AD and CN subjects.
After applying our shape-informed atlasing method, statistically significant dif-
ferences can be observed for the MD and RD measures between the CN and
AD groups. Furthermore, we applied our atlasing method to the entire cohort
to generate their U-fiber representation in the motor-sensory cortex. As shown
in Table 2, U-fibers from our atlasing method outperform the original u-fibers
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from tracking for the detection of group differences in SWM connectivity. These
results demonstrate that our method can provide more reliable and robust SWM
connectivity analysis for low-resolution dMRI data in clinical studies.

4 Conclusion

In this paper, we propose a novel surface-based and shape-informed SWM atlas-
ing framework for robust SWM analysis. We use surface-based U-fiber tracking
to build a dictionary containing HCP subjects with high groupwise consistency of
major U-fibers. The shape-informed atlasing method allows more reliable brain
connectivity analysis of SWM in clinical studies with low-resolution diffusion
MRI.
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