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Abstract. This paper investigates both biomechanical-constrained non-
rigid medical image registrations and accurate identifications of mate-
rial properties for soft tissues, using physics-informed neural networks
(PINNs). The nonlinear elasticity theory is leveraged to formally estab-
lish the partial differential equations (PDEs) representing physics laws
of biomechanical constraints to be satisfied, with which registration and
identification tasks are treated as forward (i.e., data-driven solutions of
PDEs) and inverse (i.e., parameter estimation) problems under PINNs
respectively. While the forward problem has direct clinical applications in
guiding targeted biopsy and treatment, the solution to the inverse prob-
lem may open new research directions in quantifying disease-indicative
mechanical properties of in vivo tissues. Two net configurations (i.e., Cfg1
and Cfg2) have also been compared for both linear and nonlinear physics
models, according to whether backbones are shared between branches or
not. Two sets of experiments have been conducted, using pairs of un-
deformed and deformed MR images from clinical cases of prostate can-
cer biopsy. In the first experiment, against the finite-element-computed
ground-truth, the root mean squared error (rmse) of registration for sur-
face points was reduced from 1.83±0.51 mm without PINNs to 1.43±0.70
mm (Cfg1, p = 0.024) and 1.23 ± 0.69 mm (Cfg2, p < 0.001) with lin-
ear elasticity, and to 1.45 ± 0.84 mm (Cfg1, p = 0.004) and 1.24 ± 0.69
mm (Cfg2, p < 0.001) with nonlinear elasticity, while average differences
between linear and nonlinear models were not found statistically signif-
icant (e.g., p = 0.972 between two Cfg1s) but their respective benefits
may depend on specific patients. In the second experiment, the non-
linear model exhibited evident advantages over the linear counterpart
(p = 0.002) in predicting ratios of tissue stiffness (i.e., Young’s mod-
ulus) between two subregions (i.e., peripheral and transition zones) of
the prostate, with the mean average percentage error (mAPE) values
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being 14.20%±14.12% and 76.28%±30.97%, respectively. The codes are
available at https://github.com/ZheMin-1992/Registration_PINNs.

Keywords: Medical image registration · Biomechanical constraints ·
Physics-informed neural networks · Material property estimation.

1 Introduction

Biomechanical modelling plays an important role in regularising medical image
registration [1,26,27] that further enables surgical guidance for different organs
(e.g., prostate [1,7,24,28], liver [17], brain [10,11] and heart [19]), for example,
to constrain predicted spatial transformations to be physically plausible, un-
der either iterative optimisation [24] or neural-network-training [7,28] schemes.
Biomechanical constraints could vary from simple linear [12] to complex non-
linear models [1,15], while they require values of material properties if applied
to the registration problem. This paper investigates both aspects by leveraging
the capabilities of physics-informed neural networks (PINNs) to seek data-driven
solutions (i.e., forward problem) and enable data-driven discovery (i.e., inverse
problem) of partial differential equations (PDEs) [9] respectively, in the non-
rigid medical image registration and material property estimation.

Linear elasticity models assuming a linear relationship between stress and
strain, are only effective for modelling small deformations under low-stress condi-
tions [12]. Nonlinear elasticity models built on more complex constitutive models
and strain energy functions, are better suited for capturing large deformations
and nonlinear material behavior [12]. For example, the anisotropic viscoelasticity
constitutive models [4,13,15] were utilised for simulating soft tissues’ deforma-
tions, led to more realistic organ (e.g., liver) geometries than linear models with
desired properties such as stress dissipation [23]. The nonlinear finite-element-
analysis was developed for modelling-fidelity surgical simulations [22]. However,
the choices of hyperviscoelastic, hyperelastic, and linear elastic constitutive mod-
els were demonstrated to be not important in estimating brain shifts for an
image-guided neurosurgery procedure [25]. It is unclear whether a more complex
nonlinear model (i.e., both geometrical and constitutive models) could make a
difference in the non-rigid point set registration problem.

Material property estimation aims to quantify mechanical properties of ma-
terials (e.g., soft tissues), which can be used to develop customized surgical
plans that could improve surgical outcomes [5,6]. Perhaps more interestingly, it
may assist disease detection and localisation, as studies frequently found in vitro
tumour has distinct mechanical properties compared to the healthy tissue [8].
The identifications of bulk and shear modulus, under both linear elasticity and
hyperelasticity models, were explored using specimens with simple one-or-two
layers structures through experimental tests (e.g., uniaxial tension or compres-
sion) [3]. The authors revealed multiple findings about under what conditions
parameters are identifiable, for example, to compute material parameters of a
single-layered specimen, a uniaxial tensile test either together with lateral strain
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measurement, with torsion or with a shear experiment is needed [3]. We note
that circumstances are much more complicated in both soft-tissue deformation
modelling where exact values of stress and strain are unknown, and image reg-
istration where displacement vectors of voxels need to be estimated. It is thus
unknown whether material properties are identifiable or not, within the chal-
lenging scenario of image registration where boundary conditions also need to be
estimated.

To answer the first question of whether nonlinear elasticity models are bet-
ter than linear counterparts in registration, in a similar fashion with a recent
work [14] where linear elasticity was adopted, this study incorporates nonlinear
biomechanical constraints in forms of PDEs into a PINN for registration. The
findings first confirmed the validity of adopting PINNs to impose biomechanical
constraints for predicted transformations and to reduce registration error, and
also indicated that there existed no statistically significant difference between
average performances using linear and nonlinear models while choices may de-
pend on specific patients. To answer the second question of whether material
properties are identifiable along with registration, PINNs were utilised to for-
mulate the joint optimisation framework of the registration problem and the
material property estimation problem. The results demonstrated that ratios of
soft tissues’ stiffness (i.e., Young’s modulus) between two distinct compartments
(i.e.,the peripheral zone and transition zone) of the prostate gland could be suc-
cessfully recovered, while nonlinear models exhibited evident advantages over
their linear counterparts in this problem.

Our contributions are summarised as follows. 1) We developed a learning-
based biomechanical-constrained non-rigid registration algorithm using PINNs,
where linear elasticity is generalised to the nonlinear version. 2) We demon-
strated extensively that nonlinear elasticity shows no statistical significance
against linear models in computing point-wise displacement vectors but their
respective benefits may depend on specific patients, with finite-element (FE)
computed ground-truth. 3) We formulated and solved the inverse parameter
estimation problem, under the joint optimisation scheme of registration and pa-
rameter identification using PINNs, whose solutions can be accurately found by
locating saddle points of the optimisation.

2 Methods

The non-rigid 3D point set registration problem in fields of medical imaging,
is to warp the source point set PS ∈ RNs×3 with ps ∈ R3 to the target point
set PT ∈ RNt×3 with pt ∈ R3, so as to accurately map important anatomical
structures in two spaces. The warped source point set is T(PS) = PS + DS ,
where the displacement vectors are DS ∈ RNs×3 with ds ∈ R3.

The idea of imposing biomechanical constraints in the registration problem
with physics-informed neural networks (PINNs), like that in [14], is to predict
point-wise displacement vectors and biomechanical-related values (e.g., stress
or strain), of which the underlying physics laws (i.e., governing equations) usu-
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Fig. 1. The schematic of the proposed physics-informed neural networks.

ally represented by partial differential equations (PDEs) should be satisfied. As
shown in Fig. 1 and introduced in details in Sect. 2.3, there are three main govern-
ing equations and one energy function in modelling deformation of soft tissues,
from simple linear relationships [14], to the elaborate nonlinear cases (i.e., com-
pressible Neo-Hookean model [16]) in this study. Let Dk be the data set of k-th
patient, containing PS and PT , Fig. 1 shows the algorithm schematic where the
displacement-predicting branch is gθg (Dk) and the stress-predicting branch is
hθh(Dk) with learnable parameters θg and θh, which together constitutes eθ(Dk)
with θ. Two net configurations have been compared, where individual and shared
(as depicted in Fig. 1) backbones (i.e., global feature extraction module based
on PointNet [18]) are utilised to extract features for two branches respectively.
For clarity, the four models with two net configurations and two physics models
are denoted as Linear Cfg1, Linear Cfg2, Nonlinear Cfg1 and Nonlinear Cfg2.

2.1 The Forward Problem of Non-Rigid Point Set Registration
using PINNs

The registration task is formulated as the forward problem (i.e., the data-driven
solutions of PDEs) which estimates the unknown function gθg (Dk) within the
PINNs framework where nonlinear PDEs are parameterised by lame parameters
λs ∈ R and µs ∈ R at the point ps. Here, boundary conditions are ‘actual’ dis-
placement vectors of source points which are unknown and thus their estimation
errors are approximated with the Chamfer loss. The Chamfer loss Lk

R(θg;Dk)
first seeks the nearest point in the other point set (e.g., T(PS)) to each point in
one point set(e.g., PT ) and computes the L2 distance, repeats the above opera-
tion for the other point set T(PS) and returns the sum of average distances. The
Chamfer loss can be either applied to all points PS and PT or surface points
only Psurface

S ∈ RNsurface
s ×3 and Psurface

T ∈ RNsurface
t ×3 (i.e., ‘strict’ boundary con-

ditions where surface points are points on the boundary). By regarding all points
as ‘collocation’ points following PINNs notation conventions [20], as shown in
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Fig. 1, nonlinear PDEs include the static equilibrium deviation loss Lk
S(θh;Dk) =∑Ns

s=1 fstatic(
∂σs

∂x , ∂σs

∂y , ∂σs

∂z ) that regularizes spatial derivatives of stress σs, the
constitutive deviation loss Lk

C(θ;Dk) =
∑Ns

s=1 fconst(σ
s, ∂ds

∂ps
, λs, µs) that relates

σs and spatial derivatives of displacements ∂ds

∂ps
with λs and µs, and the elastic

energy loss Lk
E(θh;Dk) =

∑Ns

s=1 fenergy(ε
s, λs, µs) that relies on strains and lame

parameters. Note that fstatic(⋆), fconst(⋆) and fenergy(⋆) will be defined in Sect.
2.3. The training loss Lk(θ;Dk) in the forward problem for the k-th subject is
given by a (w ∈ R+)-weighted sum of these terms,

Lk(θ;Dk) = wLk
R(θg;Dk) + Lk

S(θh,Dk) + Lk
C(θ;Dk) + Lk

E(θh;Dk), (1)

where Dk is considered to include lamé parameters λs and µs.

2.2 The Inverse Problem of Identifying Material Properties of Soft
Tissues using PINNs

In Sect. 2.1, we treat the registration as the forward problem using PINNs, which
necessitates knowing material properties (e.g., Young’s modulus). In contrast,
the parameter (e.g., material properties) estimation is regarded as the inverse
problem (i.e., the data-driven discovery of PDEs) under a similar PINNs frame-
work. Consider two distinct compartments of the prostate gland, i.e., the pe-
ripheral zone (PZ) and transition zone (TZ), which exhibit different stiffness
magnitudes [6,5]. Let DPZ

k and DTZ
k denote points in PZ and TZ, EPZ

k ∈ R and
ETZ

k ∈ R be their respective Young’s modulus values. The particular example
of the inverse problem here, assuming that ETZ

k is known, is to estimate the
ratio βk ∈ R of EPZ

k to ETZ
k , which plays an important role in biomechanics-

constrained non-rigid point set registration as verified in [6]. To this end, one
learnable weight that functions as βk is added into the network eθ(Dk). The loss
function for the inverse problem, under the joint learning scheme of point set
registration and parameter estimation, is

Lk(θ, βk;Dk) = wLk
R(θg;Dk)+Lk

S(θh,Dk)+Lk
C(θ, βk;Dk)+Lk

E(θh, βk;Dk), (2)

where Lk
C(θ, βk;Dk) and Lk

E(θ, βk;Dk) can be expanded as Lk
C/E(θ, βk;Dk) ≡

Lk
C/E(θ;D

TZ
k , ETZ

k ) + Lk
C/E(θ;D

PZ
k , βkE

TZ
k ), where lame parameters λs and µs

at ps are computed using ETZ
k and βkE

TZ
k depending on the sub-regions (i.e.,

DPZ
k or DTZ

k ) in which ps falls.
The optimisation problem minimising Lk(θ, βk;Dk) in Eq. (2) is likely to be

ill-posed, in that it contains unknowns in both registration-related and physics-
laws-related loss terms (i.e., PDEs). Instead of seeking local minimums w.r.t.
material parameters which is likely to be unidentifiable and produces naive solu-
tions, we investigate saddle points that are much more interesting and represent
practically meaningful solutions as will be demonstrated in Sect. 3.
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2.3 Governing Equations for Deforming Soft Tissues Considering
Nonlinear Elasticity

In this section, we describe in details PDEs representing governing equations in
both the forward problem in Sect. 2.1 and the inverse problem in Sect. 2.2.
Nonlinear Strain-displacement Equations The nonlinear strain-displacement
equation at a source point ps is

εs =
1

2
(∇ds +∇dT

s +∇dT
s∇ds), (3)

where εs is the Green-Lagrangian strain tensor at ps, ∇ds is the displacement
gradient w.r.t. spatial coordinates x, y, z of ps. As shown in Fig. 1, Eq. (3) is
utilised to derive point-wise strain εs from the predicted displacement vector ds.
Static Equilibrium Equations In nonlinear elasticity, σs predicted by hθh(Dk)
at ps would be a 2nd Piola-Kirchhoff stress tensor, satisfy the following equilib-
rium equation σs

ji,j + Fi = 0 where (·),j is a shorthand for ∂(·)
∂(ps)j

, Fi ∈ R is the
body force that is assumed to be zero at the static equilibrium, i and j denote
three spatial directions. The PDEs that compose Lk

S(θh;Dk) in Eqs. (1) and (2)
are fstatic(

∂σs

∂x , ∂σs

∂y , ∂σs

∂z ) = ||∂σ
s
xx

∂x +
∂σs

yx

∂y +
∂σs

zx

∂z ||22 + ||∂σ
s
xy

∂x +
∂σs

yy

∂y +
∂σs

zy

∂z ||22 +
||∂σ

s
xz

∂x +
∂σs

yz

∂y +
∂σs

zz

∂z ||22.
Nonlinear Constitutive Equations The stress and displacement gradients are
further constrained by the constitutive equation as σs = µsJ

−1
s (FsF

T
s − I3×3)+

λs(Js−1)I3×3, where Fs = I3×3+
∂ds

∂ps
∈ R3×3 is the deformation gradient at ps,

Js = det(Fs) ∈ R is the determinant of Fs, λs ∈ R and µs ∈ R are Lame param-
eters at ps which are computed with Young’s Modulus Es and Possion’s ratio vs
using λs =

Esνs

(1−2νs)(1+νs)
and µs =

Es

2(1+νs)
. The PDEs that comprise Lk

C(θ;Dk) in
Eqs. (1) and (2) are fconst(σ

s, ∂ds

∂ps
, λs, µs) =

∑
i∈{1,2,3} ||σs

ii−µsJ
−1
s ((FsF

T
s )ii−

1) + λs(Js − 1)||22 +
∑

⟨i,j⟩∈{⟨1,2⟩,⟨1,3⟩,⟨2,3⟩} ||σs
ij − µsJ

−1
s (FsF

T
s )ij ||22, where to

maintain uniformity of notations here σs
11 = σs

xx (similar for index pairs ⟨2, 2⟩
and ⟨3, 3⟩) and σs

12 = σs
xy (similar for index pairs ⟨1, 3⟩ and ⟨2, 3⟩) hold.

Nonlinear Elastic Energy Density Function The elastic energy function
fenergy(ε

s, λs, µs) that forms Lk
E(θh;Dk) in Eqs. (1) and (2) is fenergy(ε

s, λs, µs) =
µs

2

(
tr(FsF

T
s )− 3− 2 lnJs

)
+ λs

2

(
Js − 1

)2) with tr(FsF
T
s ) represented by εs.

3 Experiments and Results

Data Sets and Evaluation Metrics The dataset contains Nk = 22 pairs of
point sets generated over MRI-derived prostate meshes [2] by producing ground-
truth deformations in [5.58, 8.66] mm using the finite element modelling (FEM)
process, proposed in [6,21], with different material properties assigned to periph-
eral zones (PZ) and transition zone (TZ): the ratios of Youngs’ Modulus with
PZ and TZ EPZ

k

ETZ
k

were in the range of [0.10, 0.20]. All data was resampled to
isotropic resolutions being 1 × 1 × 1 mm3. For each patient, the pairs of point
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Fig. 2. The root-mean-squared-error (rmse) of registration using different algorithms
for surface and all points on the left and right subplots, respectively. n.s.: not significant,
⋆ : p < 0.05, ⋆⋆ : p < 0.01, ⋆ ⋆ ⋆ : p < 0.001.

Without PINNsBefore Registration Linear Config1 Linear Config2 Nonlinear Config1 Nonlinear Config2

Case 1

Case 2
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Fig. 3. Qualitative results for two cases with the five registration models. The rmse
values for all points are also reported followed by those in parentheses for surface points.

sets were randomly downsampled to PS and PT with Ns = Nt = 1024 and
N surface

s = N surface
t = 512 independently. In the first experiment, the root-mean-

square error (rmse) of registration was defined between predicted displacement
and ground-truth Dgt

S ∈ R|Ñs|×3 as rmse =
√

1

|Ñs|

∑
s∈Ñs

||ds − dgt
s ||22 where

here Ñs denote the set of all or surface points. In the second experiment, we
computed the absolute percentage error (APE) as |(ratiopred − ratiogt)/ratiogt|
for each case where ratiopred and ratiogt are predicted and ground-truth ratios,
and also reported mean APE (mAPE) for all cases. Details about implementa-
tions such as network architectures are in the Supplementary material.
Registration Performances Fig. 2 includes the rmse values for all and sur-
face points, respectively. Several key observations can be made from Fig. 2: (1)
except for the case with Linear Cfg1 [14] for all points (p = 0.083), all methods
outperformed Without PINNs significantly at α = 0.05 level; (2) except for the
case where Linear Cfg1 and Linear Cfg2 were significantly different for all points
(p = 0.0496), the differences between every pair of PINNs algorithms were not
statistically significant; (3) Nonlinear Cfg2 achieved the lowest mean registration
error values being 1.25± 0.62 mm and 1.24± 0.68 mm for both all and surface
points (p < 0.001), against 1.80± 0.44 mm and 1.83± 0.51 mm Without PINNs.

Fig. 3 shows the registration performances with two patient cases where blue
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Fig. 4. The optimisation process of the inverse problem estimating the young’s modulus
ratio between two sub-regions of prostate, are found by locating saddle points.

Table 1. Young’s modulus ratio between the two regions estimated with two models.

Patient ID Ground-truth
Ratio

Predicted Ratio
Linear

APE
Linear

Predicted Ratio
Nonlinear

APE
Nonlinear

Case 1 0.19 0.12 36.84% 0.19 1.23%
Case 2 0.16 0.10 37.50% 0.16 1.25%
Case 3 0.11 0.22 100.00% 0.10 9.09%
Case 4 0.12 0.22 83.33% 0.15 25.00%
Case 5 0.17 0 100.00% 0.19 11.76%
Case 6 0.19 0 100.00% 0.12 36.84%

and red dots respectively denote source (or predicted warped source) and target
point sets with exact correspondences before (or after) registration. In Case 1,
the linear model (e.g., rmse values were 0.56 mm and 0.53 mm for all and surface
points using Linear Cfg2) was better than the nonlinear model (e.g., rmse values
were 1.21 mm and 1.04 mm using Nonlinear Cfg2) and Without PINNs (i.e., rmse
values were 2.98 mm and 3.24 mm), while nonlinear models outperformed linear
ones and Without PINNs for Case 2. In the first row of Fig. 3, blue and red star
shapes denote corresponding targets in two spaces.
Results of the Inverse Problem Fig. 4 demonstrates that the ratios of young’s
modulus between the PZ and TZ were recovered (only Cfg1s are reported due to
much better performances than Cfg2s), by locating saddle points (i.e., through
finding the flat line in Fig. 4) during optimisation. The confidence interval is
represented as shadow area in Fig. 4. As shown in Fig. 4, the nonlinear model ex-
hibited significant advantages which is expected because more subtle (i.e., high-
order) information is preserved. Table 1 shows the ground-truth and predicted
ratios for example cases, from which the APE was computed. The mAPE values
with linear and nonlinear models were 76.28% ± 30.97% and 14.20% ± 14.12%
respectively, indicating the nonlinear model performed better in the inverse prob-
lem (p = 0.002).

4 Discussions and Conclusions

We have demonstrated the success of incorporating the nonlinear elasticity in
both forward and inverse problems of biomechanically constrained nonrigid point
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set registration. This work needs to be interpreted with limitations. First, the
drawn conclusions may not be directly generalizable given the limited data size.
Second, although results shed light on tackling the inverse problem along with
the registration, it requires additional efforts (e.g., adding regularization terms)
to further improve both accuracy and success rate.

To conclude, in this paper, we have utilised PINNs to solve both the registra-
tion of soft tissues and the estimation of material properties, tackled as forward
and inverse problems respectively, considering both linear and more complex
nonlinear elasticities. Experimental results first show that no statistical signifi-
cance is observed between linear and nonlinear models in the forward problem,
among which results are highly variable across patients. The validity of adopt-
ing PINNs for solving estimating parameters, together with the superiority of
the nonlinear model, is also demonstrated. These conclusions are drawn based
on clinical data from prostate cancer patients, for topical applications including
intraoperative motion modelling and multimodal image registration, potentially,
new applications in better characterisation of pathological tissue motion.
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