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Abstract. The purpose of this study is to improve Unsupervised Do-
main Adaptation (UDA) by utilizing intermediate image distributions
from the source domain to the target-like domain during the image gen-
eration process. However, image generators like Generative Adversarial
Networks (GANs) can be regarded as black boxes due to their complex
internal workings, and we can only access the final generated image. This
limitation makes them unable for UDA to use the available knowledge of
the intermediate distribution produced in the generation process when
executing domain alignment. To address this problem, we propose a novel
UDA framework that utilizes diffusion models to capture and transfer an
amount of inter-domain knowledge, thereby mitigating the domain shift
problem. A coupled structure-preserved diffusion model is designed to
synthesize intermediate images in multiple steps, making the intermedi-
ate image distributions accessible. A stochastic step alignment strategy
is further developed to align feature distributions, resulting in improved
adaptation ability. The effectiveness of the proposed method is demon-
strated through experiments on abdominal multi-organ segmentation.

Keywords: Unsupervised Domain Adaptation · Diffusion Model · Cross-
modality segmentation.

1 Introduction

Medical image segmentation [8,15,16] is a crucial task in medical image analysis
that involves identifying and delineating the boundaries of anatomical struc-
tures or lesions in medical images. In many clinical scenarios, multiple imaging
modalities can provide complementary information for underlying anatomy or
pathology [1]. Hence, cross-modality medical image segmentation is of great im-
portance. However, the annotations for the medical image are prohibitively ex-
pensive or unavailable in some domains. Besides, medical images acquired from
different modalities often have different characteristics [6,7], which leads to signif-
icant challenges in developing accurate segmentation models when generalizing
to different modalities.
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Unsupervised Domain Adaptation (UDA) is a technique that aims to address
this issue. Recently, UDA methods based on generation approaches, e.g., using
Generative Adversarial Networks (GANs) [21] as image generators, have shown
promising results in various applications [20], including image classification [10]
and semantic segmentation [3,10,19,22]. These methods aim to learn a mapping
between the source and the target domains by generating synthetic images sim-
ilar to those in the target domain to reduce domain discrepancy. For example,
Shrivastava et al. designed SimGAN [17] to perform adaptation by training an
image translator to map data from source to target and used these generated
target-like images to train a classifier. Subsequently, they tested the unlabeled
target data on this target-domain classifier. Hoffman et al. [10] and Chen et al. [3]
first used GAN to transform the source images to the appearance of target data,
then implemented the feature alignment between the generated target-like im-
ages and the real target images. Based on these works, Hu et al. [11] further
designed the Semantic Similarity Mining (SSM) module to enhance the domain-
invariant feature adaptation. Wang et al. [19] trained a characterization transfer
module to learn the appearance transformation from the source domain to the
target domain and then made the feature-level adaptation by generative ad-
versarial learning. Although methods based on image-to-image translation have
achieved remarkable performance, they utilize the final generated images alone
for alignment, neglecting the intermediate data distribution during the genera-
tion process. As the image generator is utilized to synthesize images from one
domain to another, these intermediate data always contain helpful information
that gradually transforms images across the two different domains. Thus, obtain-
ing and exploiting this latent transfer knowledge becomes the key to addressing
UDA problems.

In this work, we propose a novel UDA framework based on diffusion models
that can capture and transfer more inter-domain knowledge to alleviate the do-
main shift issue. The main contributions of our work are summarized as follows:
• We propose a coupled structure-preserved diffusion model, using two bidi-
rectional step-by-step image projection sequences to generate complementary
images and preserve semantic information. It deduces all intermediate images,
from the original images to the final generated images, delivering more effective
domain knowledge.
• To effectively leverage the intermediate images, we propose the stochastic step
domain alignment strategy to reduce the domain discrepancy for data in the
entire generation process through multi-level generative adversarial learning.
• We evaluate our method on abdominal multi-organ segmentation and achieve
state-of-the-art performance, demonstrating the effectiveness of our method.

2 Method

In the scenario of UDA, we are provided with the data from two distinct domains:
the source data xsrc ∈ Xs with its corresponding label y ∈ Y, and the unlabelled
target data xtgt ∈ Xt. We aim to learn a model that can perform well on the
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Fig. 1: The framework of the proposed method. Firstly, a coupled structure-preserved
diffusion model is employed to synthesize the source (target) image to the target
(source) image and deduce all intermediate images. Then, we put the denoised gener-
ated images into the neural network to extract the features and obtain the predictions.
The features with dashed lines are used for the next calculation. Finally, we perform
the stochastic step domain alignment for data in the entire generation process.

target data. The overall framework of our proposed method is shown in Fig.1. It
uses two unpaired images as inputs, aiming to adapt the distributions from the
unlabeled target domain to the labeled source domain. The framework consists
of three key components. First, the coupled structure-preserved diffusion models
are introduced as image generators to synthesize images from the source to
the target domain and vice versa. Second, we employ a segmentation network to
extract the features of the two original images, the two associated step-stochastic
generated images, and the final generated image of the source domain, thereby
obtaining the features of five images in total. We then use the features of the
two original images and the final generated image to predict the segmentation
results. Finally, we apply generative adversarial learning to perform the domain
adaptation on the feature space and the prediction space. The features of step-
stochastic generated images are especially utilized to align the distributions in
the entire generation process to improve the adaptation ability of the cross-
modality segmentation model.

2.1 Structure-Preserved Diffusion Model for Image Synthesis

Unlike GAN-based image generators, diffusion-based generators synthesize im-
ages step by step, which deduces all intermediate images from the original im-
ages to the final generated images. To explain the construction of the structure-
preserved diffusion model, we use the source domain as an example. During
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training, the generative diffusion model used in the source domain is trained
with target data. During sampling, a source image is provided as a reference im-
age, and the diffusion model projects it to the target domain step by step. As a
result, we obtain a series of generated images, and these intermediate generated
images contain a vast amount of distribution knowledge between the source and
target domains. Therefore, for the task of UDA based on the generation method,
the diffusion model is more suitable as a generator.

In this work, we build diffusion models based on the denoising diffusion prob-
abilistic model (DDPM) [9]. DDPM is a class of latent variable models, starting
from a data point sampled from the distribution x0 ∼ q(x0). The forward pro-
cess of diffusion can be defined as a Markov chain in which we gradually add a
small amount of Gaussian noise to the sample x0 in T steps:

q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1),here q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), (1)

where {β ∈ (0, 1)}Tt=1 is the variance schedule. When T → ∞, xT is an isotropic
Gaussian distribution.

For the reverse process, as q(xt|xt−1) cannot be estimated readily, a deep
network pθ is learned to approximate the conditional probabilities. Accordingly,
given xT ∼ N (0, I), the reverse process is formulated as a Markov chain with
learned mean and fixed variance:

pθ(x0:T ) := p(xT )
∏T

t=1 pθ(xt−1|xt),here pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σ
2
t I),
(2)

let αt := 1 − βt and ᾱt :=
∏t

i=1 αi, then µθ(xt, t) :=
1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)).

The simplified objective of the diffusion model ϵθ(xt, t) can be written as:

min
θ

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥

2
], where ϵ ∼ N (0, I). (3)

Although DDPM is capable of synthesizing images that match the appear-
ance of the target domain from the source domain, it is observed that the struc-
ture of the sampled images is distorted, leading to changes in their semantic
content. This is not desirable for the UDA task, as the performance of cross-
modality segmentation may be adversely affected. Furthermore, using the sam-
pled images as inputs for the segmentation network directly will lead to unstable
training due to the presence of noise.

In order to project the image from one to the other domain while preserving
the content of the original domain, inspired by [5], we introduce the iterative la-
tent refinement process to guide the structure of images. Specifically, we adopt a
linear low-pass filtering operation ϕN (.) and a sequence of downsampling and up-
sampling by a factor of N to capture the structural information of the image. By
denoting the image sequence in the forward process of DDPM as (x0,x1, ...,xT ),
the image sequence in the reverse process of DDPM as (x

′

T ,x
′

T−1, ...,x
′

0), the x̂t

is the sample which is refined based on xt and x
′

t. We make the sampled image
x̂t refer to the structure of the image xt for every interval of s steps. The final
reverse process can be defined as:

x̂t−1 = ϕN (xt−1) + (I− ϕN )(x
′

t−1), where x
′

t−1 ∼ pθ(x
′

t−1|x̂t). (4)
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Then, to make the segmentation stable, we relieve noise by following Tweedie’s
formula [13] to obtain the clean images: T (xt) :=

xt√
ᾱt

−
√
1−ᾱt√
ᾱt

ϵθ(xt, t).

2.2 Stochastic Step Domain Alignment

With the assistance of the diffusion model, we are able to project images bi-
directionally, which allows us to transfer the appearance of the images between
domains. However, the model’s adaptation ability still needs improvement in
both the feature and prediction space due to the significant domain gap present
in UDA. To address this issue, we adopt a multi-level generative adversarial
learning approach to align the data generated in the entire generation process of
the diffusion model. In particular, in order to take full advantage of the sampled
intermediate image, which contains abundant transfer knowledge between the
source and target domains, we propose the stochastic step domain alignment
strategy for multiple steps of the diffusion model.

For the beginning of the generation process of the diffusion model, which
starts with the two original images xsrc and xtgt, we extract their respective
features f(xsrc) and f(xtgt) using segmentation network. Subsequently, we in-
troduce a discriminator Df to align the feature distributions of f(xsrc) and
f(xtgt). This alignment aims to bring the distribution of the unlabeled target
data closer to that of the labeled source data. To achieve this alignment, we min-
imize the adversarial loss Lf

adv during the training of the segmentation backbone.
This loss forces the backbone to provide features that are in close distribution
to the source data to fool the discriminator, while the discriminator attempts
to classify the data from different domains using cross-entropy. The loss can be
expressed as:

min
f(.)

Lf
adv = −E

[
log(Df (f(x

tgt))
]
,

max
Df

Lf
d = E [log(Df (f(x

src))] + E
[
log(1−Df (f(x

tgt))
]
.

(5)

Further, we observe that although the appearances of source and target data
exist a significant difference, the structures of prediction, i.e., g(xsrc), g(xtgt), are
consistent for the abdominal multi-organ segmentation. Therefore, we perform
the same generative adversarial strategy using discriminator Dg to implement
consistency constraints on prediction space.

For the sampled intermediate images of the diffusion model, i.e., the denoised
image sequences {T (x̂src

T ), T (x̂src
T−1), .., T (x̂src

1 )} and {T (x̂tgt
T ), T (x̂tgt

T−1), .., T (x̂tgt
1 )},

we propose the stochastic step domain alignment strategy to establish the multi-
level adversarial adaptation. We randomly select a t from a uniform distribution
U(0, T ) for every iteration in the training of the segmentation network. Then we
put the selected step-stochastic images T (x̂src

t ), T (x̂tgt
t ) into the segmentation

network to obtain the corresponding features f(T (x̂src
t )), f(T (x̂tgt

t )). Taking the
adaptation to the source domain as an example, we expect the segmentation
network to produce feature distributions close to the source domain for the gen-
erated intermediate image from target image T (x̂tgt

t ) to fool the discriminator
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Dsrc
t . The adversarial and discrimination losses can be expressed as:

min
f(.)

Lt
adv = −E

[
log(Dsrc

t (f(T (x̂tgt
t )))

]
,

max
Dsrc

t

Lt
d = E [log(Dsrc

t (f(xsrc))] + E
[
log(1−Dsrc

t (f(T (x̂tgt
t )))

]
.

(6)

Accordingly, another discriminator Dtgt
t is designed to distinguish f(xtgt) and

f(T (x̂src
t )) as much as possible. These alignments can make the distribution of

features produced by the network as close as possible. Therefore, although we
can only access the annotations of source data, the network can still perform
well on target data.

For the final generated denoising image of source image T (x̂src
0 ), we let it

share the same annotations with the original image xsrc to calculate the segmen-
tation loss L̂seg, which consists of a cross-entropy LCE and a generalized dice loss
LDice. As such, the segmentation network is forced to maintain the semantics
consistency in prediction space. The final segmentation losses are computed by:

Lseg = E[LCE(g(x
src), y) + LDice(g(x

src), y)],

L̂seg = E[LCE(g(T (x̂src
0 )), y) + LDice(g(T (x̂src

0 )), y)].
(7)

Finally, we formulate the abdominal multi-organ segmentation and adversar-
ial learning into a unified framework for the UDA task. The overall objective
function is defined as a weighted summation of all the previously defined loss
functions: L = λ(Lseg + L̂seg)+λf (Lf

adv +Lf
d)+λg(Lg

adv +Lg
d)+λt(Lt

adv +Lt
d).

3 Experiments

3.1 Dataset and Settings

Data Setup. The selection, partitioning and processing of datasets are con-
sistent with the comparison methods [3]. 20 T2-SPIR MRI volumes from the
ISBI 2019 CHAOS Challenge [12], and 30 public CT volumes from [14] were
used to evaluate the performance of our method on the task of abdominal multi-
organ segmentation. The datasets provide pixel-wise annotations for four or-
gans, i.e., the Liver, Right kidney (R. kid), Left kidney (L. kid), and Spleen.
The datasets are randomly split into 80% and 20% for training and testing. To
make the data more diverse and relieve overfitting, data augmentation with ro-
tation, scaling, and affine transformations was employed. The intensity of every
image was rescaled to [-1, 1]. The dataset partition is based on the individual
subjects (patient-wise) to ensure the training and testing subjects are fully non-
overlapped, and we trained the data at the slice level and evaluated it at the
volume level. The Dice Similarity Coefficient (DSC) and the Average Symmetric
Surface Distance (ASD) are reported as metrics.
Implementation Details. The proposed method is implemented using Py-
Torch. To save memory and simplify the training process to make it more stable
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Table 1: Performance comparison between our and the SOTA methods on the ab-
dominal dataset for multi-organ segmentation.

MR→CT
Task DSC (%) ASD (mm)

Method Liver R. kid L. kid Spleen Avg. Liver R. kid L. kid Spleen Avg.

Source Only 81.5 54.8 44.6 44.2 56.3 3.4 12.4 9.2 6.2 7.8
Target Only 94.6 91.4 90.5 94.7 92.8 0.9 0.5 0.6 0.6 0.7

CycleGAN [21] 83.4 79.3 79.4 77.3 79.9 1.8 1.3 1.2 1.9 1.6
AdaptSegNet [18] 85.4 79.7 79.7 81.7 81.6 1.7 1.2 1.8 1.6 1.6

Cycada [10] 84.5 78.6 80.3 76.9 80.1 2.6 1.4 1.3 1.9 1.8
SIFA-V2 [3] 88.0 83.3 80.9 82.6 83.7 1.2 1.0 1.5 1.6 1.3
DSFN [22] 87.3 83.4 79.7 81.1 82.9 1.7 2.1 1.8 1.6 1.8
CASA [19] 89.1 84.7 82.5 83.2 84.9 1.1 1.2 1.1 1.3 1.2
SSM [11] 88.5 83.3 82.0 83.1 84.2 1.3 1.0 1.2 1.6 1.3

Ours 89.0 85.6 85.6 85.8 86.5 1.5 1.3 1.2 1.2 1.3

CT→MR
Task DSC (%) ASD (mm)

Method Liver R. kid L. kid Spleen Avg. Liver R. kid L. kid Spleen Avg.

Source Only 58.0 46.1 62.8 70.5 59.4 2.6 4.6 3.6 3.9 3.7
Target Only 93.8 93.7 93.4 91.3 93.1 0.6 0.6 0.4 0.5 0.5

CycleGAN [21] 88.8 87.3 76.8 79.4 83.1 2.0 3.2 1.9 2.6 2.4
AdaptSegNet [18] 85.8 89.7 76.3 82.2 83.5 1.9 1.4 3.0 1.8 2.1

Cycada [10] 88.7 89.3 78.1 80.2 84.1 1.5 1.7 1.3 1.6 1.5
SIFA-V2 [3] 90.0 89.1 80.2 82.3 85.4 1.5 0.6 1.5 2.4 1.5
DSFN [22] 89.4 89.6 78.6 81.7 84.8 2.1 1.0 1.6 2.2 1.7
CASA [19] 90.7 90.5 80.6 82.5 86.1 1.4 1.3 2.0 1.4 1.5

Ours 84.4 90.3 92.1 86.6 88.3 1.5 0.5 0.5 0.6 0.8

in practice, we train our model in stages. First, we used the trained diffusion
models to generate the structure-preserved intermediate image sequences. Then,
we applied the proposed stochastic step domain alignment to train the segmen-
tation network. The training of the diffusion model and segmentation network
used 6 and 2 Tesla V100 GPUs with 32 GB of memory, respectively. We used
Attention-Unet [15] as the segmentation backbone and the network with 5 con-
volution layers depicted in [18] as the discriminators. The batch size was set to
12 and 16 for MR→CT and CT→MR tasks. For the training of the segmentation
network, we used the Stochastic Gradient Descent (SGD) [2] as the optimizer
with a learning rate of 2× 10−2 for MR→CT and 5× 10−3 for CT→MR tasks;
the momentum is 0.9, and the weight decay was 5×10−4. The learning rate was
decayed by a polynomial strategy [4] with a power of 0.75. For fully convolutional
discriminators, we used the Adam optimizer with the learning rate of 5× 10−5.
The tuning weights (λ, λf , λg, λt) were set as (1, 0.1, 0.01, 0.1) for MR→CT and
(1, 0.1, 0.01, 0.001) for CT→MR, respectively.

3.2 Comparison with State-of-the-art Methods

We have evaluated the effectiveness of our proposed method against several
state-of-the-art (SOTA) methods for UDA on the task of abdominal multi-organ
segmentation. All the methods we compared employed adversarial generative
strategies for distribution alignment. In particular, CycleGAN [21], Cycada [10],
SIFA [3], DSFN [22], and CASA [19] perform the domain adaptation based on
the generative approaches by image translator. Table 1 lists the performance in
terms of DSC and ASD for UDA tasks of MR→CT and CT→MR. We also in-
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Table 2: Effectiveness of different component combinations on the abdominal dataset
for multi-organ segmentation.

MR→CT
Component DSC (%) ASD (mm)

Df Dg Dt Liver R. kid L. kid Spleen Avg. Liver R. kid L. kid Spleen Avg.

Source Only 81.5 54.8 44.6 44.2 56.3 3.4 12.4 9.2 6.2 7.8√
89.4 84.8 70.2 84.8 82.3 1.9 2.2 8.0 2.0 3.5√ √
89.8 82.0 81.3 86.7 84.9 1.5 1.4 1.5 1.4 1.5√ √ √
89.0 85.6 85.6 85.8 86.5 1.5 1.3 1.2 1.2 1.3

Target Only 94.6 91.4 90.5 94.7 92.8 0.9 0.5 0.6 0.6 0.7

CT→MR
Component DSC (%) ASD (mm)

Df Dg Dt Liver R. kid L. kid Spleen Avg. Liver R. kid L. kid Spleen Avg.

Source Only 58.0 46.1 62.8 70.5 59.4 2.6 4.6 3.6 3.9 3.7√
83.4 73.9 83.4 84.8 81.4 1.5 1.5 2.6 3.4 2.3√ √
86.4 86.3 84.6 83.3 85.2 1.4 0.6 1.0 2.0 1.3√ √ √
84.4 90.3 92.1 86.6 88.3 1.5 0.5 0.5 0.6 0.8

Target Only 93.8 93.7 93.4 91.3 93.1 0.6 0.6 0.4 0.5 0.5

M
R

→
 C

T
C

T
→

 M
R

𝑫𝒇 𝑫𝒇 +𝑫𝒈 FULL Ground TruthInput Source Only Target Only

Fig. 2: The visualization results produced by different component combinations. Red,
green, purple, and yellow colors denote the Liver, R. kid, L. kid, and Spleen.

clude "Source Only" and "Target Only" as purely unsupervised and supervised
methods that serve as the lower and upper bounds of the UDA methods. We
note that the "Source Only" task only achieves an average DSC of 56.3% and
59.4%, indicating a significant performance gap to the "Target Only" task due
to the domain shift. Among the abovementioned methods, our method shows a
significant improvement over the recently proposed CASA [19] with a 1.6% and
2.2% increase in average DSC for MR→CT and CT→MR, respectively. Further-
more, our proposed method has demonstrated the ability to achieve competitive
results in MR→CT tasks with an average ASD of 1.3. It also outperforms SOTA
methods by a significant margin, achieving an average ASD of 0.8 in CT→MR
tasks.

3.3 Ablation Study

To investigate the impact of different components of our proposed method, we
conducted an ablation study to evaluate the performance of our method with and
without the following components: 1) the feature alignment of real image con-
strained by Df ; 2) the prediction alignment of real image constrained by Dg; 3)
the feature alignment of step-stochastic sampled image constrained by Dt, where
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Dt = Dsrc
t +Dtgt

t . Table 2 summarizes the experimental results of our ablation
study, and the visualizations of their segmentation results are shown in Fig. 2.
From the results, Df can significantly improve the cross-modality segmentation
performance, with an increase of 26% and 22% in average DSC compared to the
"Source Only" without adaptation. Continually increasing prediction alignment
constrained by Dg can further improve performance, demonstrating its effective-
ness in learning structural prediction space. Finally, it can be observed that our
full model performs better than all competing methods. The feature alignment
of the step-stochastic sampled image is found to be crucial for improving the
generalization ability across different modalities. Fig. 2 depicts the progressive
development of our method through the incorporation of our proposed modules,
which allow for an approach toward the ground truth gradually.

4 Conclusion

This paper presents a novel UDA framework using the structure-preserved diffu-
sion models that bidirectionally generate intermediate images in multiple steps.
It allows the model to capture more shared knowledge between the source and
target domains and transfer them through the stochastic step domain alignment
strategy. Our approach effectively aligns feature distributions and the experimen-
tal results demonstrate its effectiveness in abdominal multi-organ segmentation.
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