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Abstract. The Gleason groups serve as the primary histological grad-
ing system for prostate cancer, providing crucial insights into the can-
cer’s potential for growth and metastasis. In clinical practice, patholo-
gists determine the Gleason groups based on specimens obtained from
ultrasound-guided biopsies. In this study, we investigate the feasibility
of directly estimating the Gleason groups from MRI scans to reduce
otherwise required biopsies. We identify two characteristics of this task,
ordinality and the resulting dependent yet unknown variances between
Gleason groups. In addition to the inter-/intra-observer variability in a
multi-step Gleason scoring process based on the interpretation of Glea-
son patterns, our MR-based prediction is also subject to specimen sam-
pling variance and, to a lesser degree, varying MR imaging protocols.
To address this challenge, we propose a novel Poisson ordinal network
(PON). PONs model the prediction using a Poisson distribution and
leverages Poisson encoding and Poisson focal loss to capture a learnable
dependency between ordinal classes (here, Gleason groups), rather than
relying solely on the numerical ground-truth (e.g. Gleason Groups 1-5
or Gleason Scores 6-10). To improve this modelling efficacy, PONs also
employ contrastive learning with a memory bank to regularise intra-class
variance, decoupling the memory requirement of contrast learning from
the batch size. Experimental results based on the images labelled by sat-
uration biopsies from 265 prior-biopsy-blind patients, across two tasks
demonstrate the superiority and effectiveness of our proposed method.
The source code is available at https://github.com/Yinsongxu/PON.git.
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1 Introduction

Prostate cancer (PCa) is the most frequently diagnosed malignancy in 105 coun-
tries [3], potentially contributed by both its high prevalence and over-diagnosis
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Fig. 1. (a) Pathologists assign Gleason groups based on how the cancer cells look like
healthy tissue under the microscope. Although cell growth is a continuous process,
pathologists discretize it (dotted lines) into multiple groups. (b) Both predictions are
incorrect and yield the same cross-entropy loss. However, a multi-modal distribution
tends to produce misclassifications that deviate further from the label, resulting in
different treatments. Consequently, it poses a higher clinical risk. Consider an image
predicted as 3+3. The multi-modal distribution appears counter-intuitive, as patholo-
gists will not assign second highest confidence to >4+3 due to the obvious difference.

using previous blind transrectal ultrasound (TRUS)-guided biopsy. As illustrated
in Fig. 1(a), the current diagnostic process has improved the TRUS biopsy, by
adopting magnetic resonance (MR) imaging as a triage test before biopsy [l].
However, this MR-targeted biopsy is subject to a significant (albeit much lower
than blind biopsies) false-positive rate which leads to considerable unnecessary
biopsies in men without cancer. In addition to the inherent specificity of MR
imaging, the current false-positive rate may also be explained by the complexity
and subjectivity in the biopsy and subsequent histology examination procedures.

Following the biopsy, the cancer-severity-indicating Gleason groups (on a
scale of 1-5) are assigned to each biopsy-obtained tissue sample, during patho-
logical examination [12]. In this study, we discuss the ordinal nature of this clas-
sification system and highlight that the dependency between Gleason groups is
highly variable and yet quantified, which may be attributed to a lack of studies
for predicting Gleason groups directly in literature. Deep learning approaches
have been proposed for detecting and segmenting clinically significant lesions
from MR images, based on radiologist labels [15], targeted-biopsy labels [10]
and on labels obtained from prostatectomy patients - which is subject to a dif-
ferent set of challenges such as shifting patient cohort and registration [1], among
other relevant tasks, e.g. needle placement [5] and registration [11].

Ordinal classification and class dependency. Gleason Groups 1-5 are
defined with an inherent order, indicating increasingly aggressive cancer which
predicts a poorer prognosis. Fig.1(b) illustrates an example of problems using
one-hot encoding with cross-entropy loss, which assumes independence between
classes. For instance, given a ground-truth label >4+3, the provided two exam-
ples, which would be classified as 3+3 and 4+3, lead to the same loss values
(indicating the same risks) if the class-independent encoding is used. However,
the former mistake (classified as 3+3) has a more serious consequence, which
should have been indicated by a higher risk.
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Ordinal encoding is considered an efficient label representation for this type
of task [8], alleviating the above-discussed issue. Furthermore, we also investigate
modelling the change between classes with an uni-modal distribution (e.g. Poison
described in Sec. 2.2), for incorporating a prior on the dependency between these
ordered classes. This uni-modal assumption reflects the fact that, in practice,
it is more likely to have class changes (the random variable in the example
Poison distribution models) near the “middle” classes (in this case, 3+3—3+4
and 3+4—4+3) than at two ends (e.g. 4+3—>4+3). This is also echoed with
clinical practice in which more middle-class cancers are considered equivocal,
therefore associating a higher possibility of changing their labels.

Unknown inter- and intra-class distributions. Furthermore, the Glea-
son groups have undergone two discretisation steps, assigning one of the five
Gleason Patterns to represent a continuously changing pattern at the cellular
scale, before being grouped into the five Gleason groups by ranking majority
and secondary Gleason patterns [12]. For example, Gleason groups are assigned
based on the appearance characterising Gleason patterns on obtained tissue spec-
imens [12], as depicted in Fig.1(a). Patients may exhibit multiple groups of cells
with varying proportions and locations. MRIs within the same group can display
diverse appearances, leading to high intra-class variance as well as the dependent
inter-class variance. This results in a complex unknown intra-/inter-class covari-
ance, subject to subjectivity and uncertainty in either step for our application,
and also to the biopsy sampling and imaging. This may challenge the design of
the ordinal encoding with a predefined and/or fixed class distribution.

Motivated by the aforementioned observations, we propose the Poisson Ordinal
Network (PON) for Gleason group estimation. First, we model the prediction
distribution using a Poisson distribution. Instead of normalization (such as soft-
max) on the classifier’s output as prediction distribution, we employ the output
as the learnable Poisson’s distribution parameter. We then introduce Poisson
encoding, which assigns values based on the learnable Poisson distribution. For
supervision, we minimise the Kullback-Leibler (KL) divergence between the pre-
dicted distribution and the encoded labels. It offers two key advantages. First, it
encourages the network to learn the inherent order of classes. Second, it prompts
the model to adapt the label distribution rather than the numerical ground-
truth. Finally, we further propose a memory-bank-based contrastive learning to
enhance representation by regulating the inter-/intra-class covariance.

Our contributions are threefold. 1) We introduce a novel Poisson encoding
approach to model ordinal Gleason groups. 2) We propose the PONs, a novel or-
dinal classification network and its training strategy for the challenging Gleason
group estimation. 3) We evaluate our method across two tasks, on a densely-
labelled clinical bi-parametric MR data set, demonstrating its superiority over
existing state-of-the-art approaches.
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Fig. 2. (a) Our method represents the prediction probability using a Poisson distribu-
tion with the parameter A\(x) output from the classifier, and stores the output from
projector in a memory bank. (b) For ordinal classification, we introduce the inherent
class ordering through Poisson encoding. (¢) To regulate the inter-/intra-class covari-
ance, we conduct contrastive learning between the sample and the memory bank, which
pulls together features with the same label and pushes away different labeled features

2 Methods

2.1 Overview

The Poisson Ordinal Network (PON), depicted in Fig.2(a), consists of an encoder
f(-) followed by two parallel branches: a classification branch and a contrastive
learning branch. In the classification brunch, we model prediction distribution as
a Poisson distribution with parameters derived from the output of classifier h(-).
Then, we propose Poisson encoding to introduce the inherent class ordering into
supervision, as shown in Fig.2(b), and the Poisson focal loss, £, to adjust the
loss contributions for different samples. In the contrastive learning branch, the
projection output from the projector g(-) is stored in the memory bank M. We
conduct contrastive learning between the projection of input and those stored in
the memory bank to improve the representation ability of the encoder as shown
in Fig.2(c). The details are described as follows.

2.2 Poisson-based Prediction

We enforce uni-modal constraints by modelling the predicted probability using
a Poisson distribution [2]. The Poisson distribution describes the probability of
a specific number of events occurring within a fixed time interval. For a discrete
random variable v, the probability mass function with parameter A > 0 is:

* exp(—
Priv==k) = A exp(=A) ]5( A), (1)

where k is the number of occurrences (k =0,1,2,... ).
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For Gleason group estimation, we consider an advancing by 1 group as the
“event”, e.g. transitioning from 3+4 to 4+3. Consequently, the number of events
corresponds to the class index (0-4). To model this, we replace the A\ with the
scalar output of classifier \(x) = h o f(x), where o denotes function compo-
sition (A\(x) € R* is enforced by softplus function). Considering the K-class
classification, we obtain the predicted distribution P € RX after normalization:

Pli] — Ij(xy“eip(—A(x))/k! .
Y1 Ax)F exp(=A(x))/k!

For ease of implementation, we introduce the auxiliary variable H € RX:

(2)

HIK] = log[A(x)" exp(—A(x)) /K] = klog(A(x)) = A(x) — log(k).  (3)

In this way, P can be derived using the softmax function applied to H.

2.3 Poisson Encoding and Poisson Focal Loss

The commonly-used combination of one-hot encoding and cross-entropy does
not account for the inherent order of classes or explicitly encourage models to
follow uni-modal distributions, as discussed in Sec. 1. To address this limitation,
we propose a novel approach called Poisson encoding. Formally, we transform
the label y to a Poisson distribution P € RX:

=—= ;
> k1 (y* exp(—y) /KN
where t is the temperature hyperparameter to control the smoothness of distri-

bution. As a supervision, we introduce Poisson focal loss, L£,f;, which adapts
focal loss [7] to Poisson encoding for ordinal classification:

(4)

Lysi = —(Ply] — Ply])"KL(P||P), (5)

where v > 0 serves as the focusing parameter, and KL(:||-) is Kullback-Leibler
divergence. When a sample is accurately classified, (P[y] — P[y])? approaches
0, contributing minimally to the overall loss. Consequently, the training empha-
sizes challenging samples. To summarise, the Poisson focal loss offers two key
advantages over the with vanilla focal loss [7] and cross entropy: (1) it intro-
duces the inherent order of classes through label encoding. (2) it encourages the
modal to consider not only the expected numerical ground-truth class but also
the distribution of the predictions.

2.4 Memory-bank-based Contrastive Learning

Taking into consideration of the diverse appearances of MRIs within the same
group, discussed in Sec. 1, we propose contrastive learning to improve the rep-
resentation learning. However, existing methods often heavily depend on batch
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size to enhance the range of contrast [14,16]. When dealing with 3D MRI data,
the memory constraints associated with small batch sizes may introduce bias
towards samples in the mini-batch. To decouple the contrastive learning from
the batch-size, we introduce memory-bank-based contrastive learning. Formally,
we propose the memory bank denoted as M, which stores the projections of all
samples x;, p; = g o f(x;), along with their labels y;, i.e. M = {(p;, %)}V,
where N is dataset size. We update M at each forward iteration. Given an image
(x,y), we select the ¢ nearest elements to go f(x) in M denoted as M,(x) C M.
We propose L, to facilitate contrastive learning;:

Z(pi,yi)qu(x) exp sim(p;, g o f(x))1{y; = y}
Z(Pi,yi)EMq(x) exp Sim(ph go f(X))

ﬁmcl - — ) (6)
where sim(-,-) is cosine similarity. With this configuration, features with the
same label are pulled together and different labeled features are pushed away.

PONSs could be trained in an end-to-end manner with the overall objective:£ =
ﬁpfl + £mcl~

3 Experiments

3.1 Experiment Setup

Dataset. Our method is evaluated on the PROMIS dataset [1] consisting of 265
publicly available MRIs from 262 patients. The Gleason Scores, obtained through
template prostate mapping biopsy|[13], were determined by expert uropatholo-
gists based on core biopsies taken at 5 mm intervals. Among all patients, 67
patients have no cancer, 49, 89, 31, and 26 patients were reported with Gleason
group 3+3, 3+4, 4+3, and >4+3, respectively. We utilize 3 image volumes from
bi-parametric sequences, including T2-weighted (T2W), diffusion-weighted with
high b-value (DWI), and apparent diffusion coefficient (ADC). All sequences
are resampled to voxels of 0.5 x 0.5 x 2 mm?® with trilinear interpolation. All
sequences are aligned with T2W images as the reference, and cropped into a
128 x 128 x 32 region of interest (ROI) centred at the prostate’s centroid.
Evaluation Metrics. We evaluate two tasks: Gleason group prediction (five
classes), and detection of clinically significant cancer (primary and secondary def-
initions). For all tasks, we utilize five-fold cross-validation. Each experiment is re-
peated five times with different random seeds, and we report the mean and stan-
dard deviation. We adopt the following metrics for evaluation: accuracy (Acc),
macro area under curve (AUC), quadratic weighted kappa (QWK), Fl-score,
sensitivity at specificity (Sen@Spec), and specificity at sensitivity (Spec@Sen).
Implementation Details. We employ the 3D ResNet18 architecture as the
encoder. The classifier consists of a fully connected layer, and the projector is a
two-layer multilayer perceptron. For optimization, we adopt the Adam optimizer
with an initial learning rate of le-4, training for 60 epochs. All experiments are
conducted using PyTorch on RTX6000 GPUs. The hyperparameters ¢, -, and ¢
are set to 0.1, 2 and 20, respectively. To keep a balanced number of samples for
each class, we utilise a weighted sampler during training.
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Table 1. Results of Gleason group prediction. (meantstandard)

Method Acct AUCT QWK?T F1t

CE 28.08+2.33 53.91+0.61 0.0340.01 20.62+1.49
FocalLoss [7] 30.70+1.81 55.02+1.54 0.06+0.03 22.82+1.89
EMD [6] 31.47+2.10 57.84+2.58 0.08+0.04 25.03£2.18
ExpLoss [9] 31.15+0.62 56.78+1.89 0.084+0.01 24.67+1.45
OrdinalEncoding [3] 29.4941.60 - 0.0640.02 22.91+2.38
Softlabel[3] 25.134+3.66 56.1943.40 0.054+0.03 22.39+3.36
Ours 29.35+1.82 60.06+1.22 0.0740.02 25.58+2.25

Table 2. Results of detection of clinically significant cancer (mean+standard).

Method Spec@Sen80% Sen@Spec80% Spec@Sen90% Sen@Spec90%
Primary definition: Gleason score > 4+3
CE 32.46+5.31 31.7643.55 15.74+5.35 16.77+5.47
FocalLoss|7] 34.02+5.20 38.53+7.64 19.3445.64 21.47+6.61
EMD [6] 38.77+7.02 39.1243.56 23.4447.27 24.12+2.56
ExpLoss [9] 35.08+7.62 36.47+5.77 21.9748.23 21.77+3.00
Softlabel[3] 40.8243.68 31.17+£1.71 24.26+8.32 15.59@9.33
Ours 43.60+6.06 44.1246.77 27.62+8.80 26.18+5.91
Secondary definition: Gleason score > 3+4
CE 41.5143.93 36.00+£3.77 26.64+5.15 22.45+2.57
FocalLoss|7] 44.704+4.98 36.33+6.64 28.33+4.20 23.11+£6.97
EMD [6] 45.91+1.03 36.4447.84 30.91+3.08 20.44+4.99
ExpLoss [9] 44.39+3.44 38.78+5.29 26.06+4.20 22.67+2.66
Softlabel[3] 40.0042.22 37.00+5.64 25.46+3.31 17.2448.66
Ours 43.79+8.76 39.00+£7.32 26.5147.22 25.00+£5.60
3.2 Results

Comparison Results. To evaluate the performance of PON, we compare our
method with ordinal classification methods, including CrossEntropy (CE), re-
weighting methods (FocalLoss [7]), ordinal classification loss (Earth mover’s dis-
tance, EMD[6], and ExpLoss [9]), and encoding methods (OrdinalEncoding [],
Softlabel[8]). To ensure fairness, we reproduce all methods on our datasets with
the same experimental settings. The results of Gleason group prediction and
detection of clinically significant cancer are shown in Tab.1 and 2, respectively.
It can be seen that PON shows a significant advantage with the highest perfor-
mance in most metrics. Noticeably, PON outperforms other methods by great
gains in the detection of primary definition significant cancer e.g., outperforms
EMD 4.83% in Spec@Sen80%, and 5.00% in Sen@Spec 80% (p-value=1.58¢-3
with the Mann-Whitney U test).

Ablation Study. To verify the impact of each component in the proposed PON,
we conducted an ablation study, as detailed in Tab.3. We propose cross-entropy
as the baseline. Notably, the inclusion of Poisson-based predictions and Poisson
encoding significantly enhances the AUC and QWK e.g. a considerable 5.13%
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Table 3. Ablation study. PP: Poisson-based Prediction, PE:Poisson encoding.

PP PE  Ly; Lome Acct AUCT QWKT Fit
28.08£2.33  53.91£0.61  0.03£0.01  20.62+1.49

v 27.37+1.86 59.04+0.95 0.044-0.02 21.17+2.55
v v 29.62+2.13 60.43+1.49 0.07+0.02 22.92+1.90
v v v 28.85+1.93 60.41+£2.49 0.07+0.02 24.144+1.09

v 30.514+2.89 55.36+£0.62 0.0640.03 23.18+2.15
v v v v 29.35+1.82 60.06+1.22 0.07+0.02 25.58+2.25

False Negative
by Radiologists

False Positive
by Radiologists

Negative

j Positive
by Network by Network

Fig. 3. Left: our method helps distinguish 30 negatives in 48 false positive samples
under the same sensitivity, and 31 positive samples in 52 false negative samples under
the same specificity by radiologists. Right: Two examples of the network predicting
correctly and radiologists predicting wrong. Arrows indicate lesions.

improvement in AUC. It demonstrates the effectiveness of uni-modal constraints
on prediction distributions, enhancing the model’s ability to learn from ordinal
data. Furthermore, when combined with £,f;, Fl-score further improves. Sub-
sequently, we introduced L,,.; to the baseline. The improvement suggests that
this strategy can significantly enhance the network’s data representation ability
by regulating inter-/intra-class covariance. In summary, PON outperforms other
models across most evaluation metrics, highlighting its suitability for ordinal
classification tasks characterized by large intra-class variance.

Comparison with Radiologists on clinically significant cancer detec-
tion. MRI scans were reported at each centre by experienced urologic radiolo-
gists prior (and blind) to obtaining densely sampled histopathology labels [1].
This provides a unique opportunity to compare the machine-predicted with radi-
ologists’ ability in grading prostate cancer, with histopathology as ground-truth.
Radiologists achieved sensitivity 75.82%/63.63%, and specificity 75.00%/71.11%,
for primary and secondary definitions respectively. We compare our method with
radiologists by adjusting the threshold to control sensitivity and specificity. Al-
though the network did not outperform expert radiologists, it can assist radiol-
ogists’ decision-making. As shown in Fig.3-left, the network can distinguish 30
negative samples in a total of radiological 48 false-positives with the same sen-
sitivity, and 31 positive samples in 52 radiological false-negatives with the same
specificity, quantitatively confirming its added clinical value. Two example cases
in which the machine predictions can be used to co-pilot radiologists, either as
a first- or second reader, are provided in Fig.3-right.
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4 Conclusion

In this work, we present a Poisson ordinal network (PON) for Gleason group
estimation. We identify two characteristics of this task, ordinality and a depen-
dent and unknown variance between Gleason groups. To address this challenge,
PONs models the prediction using a Poisson distribution and leverages Poisson
encoding and Poisson focal loss to capture a learnable dependency between ordi-
nal classes. Furthermore, to improve this modelling efficacy, PONs also employ
contrastive learning with a memory bank. Experimental results based on the im-
ages labelled by saturation biopsies across two tasks demonstrate the superiority
and effectiveness of our proposed method.
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