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Abstract. Electroencephalography (EEG) motor imagery (MI) classi-
fication is a fundamental, yet challenging task due to the variation of
signals between individuals i.e., inter-subject variability. Previous ap-
proaches try to mitigate this using task-specific (TS) EEG signals from
the target subject in training. However, recording TS EEG signals re-
quires time and limits its applicability in various fields. In contrast,
resting state (RS) EEG signals are a viable alternative due to ease of
acquisition with rich subject information. In this paper, we propose a
novel subject-adaptive transfer learning strategy that utilizes RS EEG
signals to adapt models on unseen subject data. Specifically, we disen-
tangle extracted features into task- and subject-dependent features and
use them to calibrate RS EEG signals for obtaining task information
while preserving subject characteristics. The calibrated signals are then
used to adapt the model to the target subject, enabling the model to
simulate processing TS EEG signals of the target subject. The proposed
method achieves state-of-the-art accuracy on three public benchmarks,
demonstrating the effectiveness of our method in cross-subject EEG MI
classification. Our findings highlight the potential of leveraging RS EEG
signals to advance practical brain-computer interface systems. The code
is available at https://github.com/SionAn/MICCAI2024-ResTL.

Keywords: Electroencephalography (EEG) · Motor imagery task · Rest-
ing state EEG · Cross-subject · Transfer learning · Model adaptation.

1 Introduction

Brain-computer interface (BCI) based on electroencephalography (EEG) has
emerged as a promising technology for rehabilitation [6] and robot systems [15],
owing to their real time processing capabilities, noninvasiveness, and cost ef-
fectiveness [18]. In particular, EEG motor imagery (MI) signals, which repre-
sent brain activity during the imagination of body movements, are crucial in
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BCI research. Although prior studies [5,21] have achieved impressive results in
intra-subject EEG MI classification, they have limited generalizability to new
subjects due to the large inter-subject variability of EEG signals i.e., the model
may overfit to specific subjects used for training. To overcome this, several stud-
ies [8,24] have proposed disentangling the extracted features into task-dependent
and task-independent features. Yet, they have only partially succeeded due to in-
sufficient information about the target subject. Alternatively, other methods use
transfer learning [14,23,28] and few-shot learning [1,2,17] for model adaptation
by leveraging task-specific (TS) EEG signals from the target subject. However,
acquiring these signals from the target subject presents practical challenges, in-
cluding the extensive time costs and the difficulty in maintaining the subject’s
concentration, limiting their application in real-world scenarios.

Resting state (RS) EEG signals, which require a relatively more straightfor-
ward acquisition process and contain rich subject information, can provide an
alternative solution for the limitations above i.e., absence of the target subject
information and difficulties of collecting TS EEG signals from the target sub-
ject. Despite their potential benefits, only few studies utilize RS EEG signals to
decrease the domain discrepancy between multiple subjects. For example, EA [7]
aligns TS EEG signals across all subjects using the mean of the covariance ma-
trix computed from RS EEG signals. BCM [9] refines the features extracted from
TS EEG signals using subject characteristics obtained from RS EEG signals. Al-
though RS EEG signals enhance the model’s generalizability, their models are
limited in adapting to new target subject since they lack appropriate updating
strategies using RS EEG signals.

To effectively address inter-subject variability of EEG data, it is essential
for the model to adjust its parameters based on RS EEG signals of the tar-
get subject. In this paper, we propose a novel subject-adaptive Resting state
EEG signal based Transfer Learning (ResTL) for cross-subject EEG MI clas-
sification. For adapting the model to the target subject, we calibrate RS EEG
signals using disentangled features to mimic TS EEG signals. Specifically, we first
train a TS EEG classifier that can disentangle extracted features into task- and
subject-dependent features. Afterward, we calibrate RS EEG signals to contain
task-dependent features while retaining subject characteristics. Our approach
is inspired by recent data-free knowledge distillation methods [16,25] that in-
versely synthesize images using a pretrained classifier. We update the RS EEG
signals by minimizing a combination of three different loss functions so that they
exhibit task-dependent features while preserving subject-dependent features. Fi-
nally, the model is finetuned using the calibrated signals. This allows the model
to be adapted to the target subject using only RS EEG signals from the target
subject.

The main contributions of this work are as follows: (i) We propose a novel
transfer learning strategy that utilizes RS EEG signals for target subject model
adaptation. To the best of our knowledge, this is the first attempt to leverage RS
EEG signals for model adaptation in EEG MI classification. This significantly
reduces the effort of collecting TS EEG signals from the target subject, requiring
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Fig. 1. Overview of the proposed ResTL that comprises three stages: (1) Initial clas-
sifier training using cross-entropy loss LCE , task loss Ltask and subject loss Lsub for
disentanglement. (2) After training, RS EEG signals (violet) are calibrated to contain
task-dependent features while retaining subject-dependent features by updating the
initial signals with a fixed model. Here, different colors correspond to the different
class labels. (3) Finally, the calibrated signals are used to fine-tune the pre-trained
model for the target subject, minimizing LCE .

only RS EEG for calibration. (ii) We calibrate RS EEG signals using the clas-
sifier to contain task-dependent features while retaining subject characteristics
through incorporating feature disentanglement and inversely image synthesizing
method from the pretrained classifier. (iii) Extensive evaluation on three datasets
reveals that ResTL significantly improves the accuracy of existing EEG methods
for MI classification, highlighting the enhancement of the applicability in BCI
applications.

2 Methodology

Our strategy (ResTL) comprises three steps as shown in Fig. 1: (1) Feature
disentanglement, (2) RS EEG signal calibration, and (3) Model adaptation. In
the feature disentanglement training step, we train the model using TS EEG
signals Xtr, corresponding labels Y tr, and RS EEG signals Ztr from multiple
subjects. This aims to train the classifier and disentangle extracted features into
task-dependent and subject-dependent features. In the RS EEG signal calibra-
tion step, we calibrate target subject’s RS EEG signals Zte using the trained
model. This imbues RS EEG signals with task-dependent features while pre-
serving subject-dependent features. In the model adaptation step, the calibrated
signals Z∗ are used to adapt the model to the target subject. This allows the
model to simulate processing TS EEG signals from the target subject by learn-
ing Z∗. In evaluation, the adapted model predicts the label Y te, taking the TS
EEG signals Xte for unseen subjects. Note that no target subject information is
used during the training phase, indicating that the model can rapidly adapt to
new target subjects. We present the algorithm of ResTL in Appendix.
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Feature disentanglement training To obtain disentangled features, we de-
sign our model with four core components: a stem encoder Estem, task-dependent
encoder Etask, subject-dependent encoder Esubject, and classifier C. Estem ex-
tracts features from given EEG signals that are fed to both Etask and Esubject.
Our goal is to extract subject-invariant task-dependent features using Etask,
and task-invariant subject-dependent features using Esubject. Additionally, the
classifier C predicts the final MI labels ŷ using the task-dependent features.

To train the model, we employ two losses for Etask and one loss for Esubject.
For Etask, the cross-entropy loss LCE is used to facilitate EEG MI classification.
We further employ a task loss Ltask to obtain the task-dependent features from
Etask. We make prototypes Py for each class and compute the distance between
the extracted features from Etask, which are then used for center loss [24] with
metric learning [20] as follows:

Ltask = − 1

N

N∑
i=1

(d(fi, Pyi
) +

∑
yi ̸=yj

max(0, d(fi, Pyi
)− d(fi, Pyj

) +m)), (1)

where i and j are indexes of signals, m is a margin for the metric learning, d
indicates l2-norm distance, fi is a global average pooled output of Etask and
Pyi is a tensor representing the center of the task-dependent feature distribution
corresponding to yi.

For Esubject, we employ a subject loss Lsub to obtain subject-dependent fea-
tures. Specifically, we employ the triplet loss [20] to minimize the distance be-
tween the anchor and positive samples while maximizing the distance between
an anchor and negative samples as follows:

Lsub = −
1

N

N∑
i=1

max(0, d(gi, gp)− d(gi, gn) +m), (2)

where gi, gp, and gn denote the outputs of Esubject when fed with input samples
xi, xp and xn, respectively. Here, xp represents a positive EEG signal from the
same subject(=xi) regardless of the class, while xn represents a negative EEG
signal from a different subject regardless of the class. Additionally, we calculate
Lsub using RS EEG signals by sampling positive and negative samples from Ztr.

Finally, the model parameters Θ in Estem, Etask, Esubject and C, are trained
as follows:

Θ∗ = argmin
Θ

LCE + λ1 Ltask + λ2 Lsub, (3)

where λ1 and λ2 are hyperparameters. Meanwhile, the prototypes Py are updated
by a moving average using the distance d(fi, Pyi) for each step as follows:

Pyi
← Pyi

− ϵ

N

N∑
i=1

d(fi, Pyi
), (4)

where ϵ is a hyperparameter.
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RS EEG signals calibration. Generative methods [12,22] have been proposed
to augment TS EEG signals. However, they require the TS EEG signal from the
target subject to reliable signal augmentation. To the best of our knowledge,
generating TS EEG signals using RS EEG signals is under-explored in EEG
MI tasks, and this approach may necessitate additional model training on a
large dataset. Thus, we adopt the inversely image synthesis from the classifier
framework for signal calibration as it does not require additional models or
datasets.

To calibrate RS EEG signals and imbue them with task-dependent features
while retaining subject characteristics via Esubject, we first input RS EEG signals
z ∈ Zte and extract subject-dependent features g that captures the unique char-
acteristics of each subject. To preserve characteristics, we minimize the l2-norm
distance between g and the extracted features from Esubject. Moreover, we utilize
trained prototypes Py to ensure that the task-dependent features extracted from
the calibrated signals align with the distribution of task-dependent features via
Eq. 1. Thus, we optimize z∗ to contain task-dependent features while preserving
subject characteristics in z as follows:

z∗ = argmin
z
LCE + γ1 Ltask + γ2 d(g,Esubject(z)), (5)

where γ1 and γ2 are hyperparameters. Consequently, this allows us to calibrate
K unique signals from a single RS signal, where K represents the number of
classes.

Model adaptation. Given the calibrated signals Z∗, we adapt the trained
model to the target subject using standard transfer learning that updates all
model parameters. Thus, only LCE is used for adaptation using calibrated signals
as follows:

Θ∗ = argmin
Θ

LCE . (6)

3 Experimental results

Dataset. We evaluate ResTL on three public datasets. BCI competition
IV-2a [4] (BCI IV-2a) contains raw EEG signals of nine subjects in twenty-
two channels with 250Hz sampling rate for four classes i.e., imaging movement
of left hand, right hand, both feet and tongue. Two sessions per subject are
provided, and each session consists 72 trials for each class i.e., total 288 signals.
BCI competition IV-2b [13] (BCI IV-2b) contains raw EEG signals of
nine subjects in three channels with 250Hz sampling rate for two classes i.e.,
imaging movement of left hand and right hand, and provides five sessions per
subject and each session consists 200/240 trials. OpenBMI [11] contains raw
EEG signals of fifty-four subjects in sixty-two channels with 1000Hz sampling
rate for two classes i.e., imaging movement of left hand right hand, and provides
two sessions per subject with 200 trials each. We down-sampled EEG signals to
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Table 1. Classification accuracy on three datasets. Each row shows the average accu-
racy and standard deviation across all subjects for each comparison method. Bold font
indicates the best accuracy.

Method BCI IV-2a BCI IV-2b OpenBMI

DeepConvNet [19] 32.70 ± 4.30 68.35 ± 6.65 68.33 ± 15.33
EEGNet [10] 51.30 ± 7.36 67.81 ± 6.52 68.84 ± 14.12
HS-CNN [5] 39.27 ± 6.56 68.52 ± 7.11 71.98 ± 9.15
CRAM [27] 59.10 ± 10.74 66.57 ± 9.03 75.46 ± 10.52
Jeon et al. [8] 58.36 ± 9.68 70.84 ± 6.06 73.32 ± 13.55
MIN2Net [3] 53.58 ± 6.96 69.58 ± 7.88 72.03 ± 14.04
GCRAM [26] 60.11 ± 9.96 69.98 ± 8.30 76.42 ± 9.85
Conformer [21] 58.23 ± 10.54 68.23 ± 6.65 77.98 ± 9.58

EEGNet-BCM [9] 58.00 ± 7.61 69.39 ± 6.82 72.50 ± 14.34
CRAM-BCM [9] 61.82 ± 10.68 70.53 ± 8.68 76.88 ± 10.09
Conformer-BCM [9] 62.23 ± 11.73 71.38 ± 7.89 78.49 ± 10.21
EEGNet-ResTL 62.07 ± 7.71 73.13 ± 9.12 83.44 ± 9.06
Conformer-ResTL 65.09 ± 11.72 73.76 ± 9.41 86.05 ± 9.10

250Hz to match other datasets. In all experiments, we employ 0∼3s signals and
3∼6s signals for RS signals and TS signals, respectively. For preprocessing, we
apply a 0.5∼40Hz bandpass filter with standardization.

Experimental details. In all experiments, we evaluate ResTL with leave-one-
subject-out validation i.e., one subject for testing and the remainder for training.
We randomly sample 20% of the train set as the validation set, and set λ1, λ2,
and ϵ to 0.5, 0.05, and 1e-5, respectively. For training, we employ an Adam
optimizer with 5e-4 learning rate (LR) for 100 epochs, decayed exponentially
(0.99) for 10 epochs. Model selection is based on the minimum validation loss.
All available RS EEG signals within each session were used to calibrate the
RS EEG signals. During calibration, we set γ1 to 1 and γ2 to 10, using Adam
optimizer with 5e-3 LR, and calibrate the RS EEG signal 300 times. For model
adaptation, we fine-tune the trained model for 10 epochs.

Comparison methods. We compare ResTL with prior works that do not
use RS EEG signals [3,5,8,10,19,21,26,27]. For a fair comparison, recent work
BCM [9] that uses RS EEG signals is included. We use scores reported in [3,8,9],
and reproduce cases where unavailable. Encoders EEGNet [10] and Conformer [21]
are integrated in ResTL with the first encoder block as the stem layer Estem,
and the rest as Etask. The architecture of Esubject is identical with Etask, except
for the addition of a linear layer at the end.

Main results. In Table 1, we present the classification results on BCI IV-2a,
BCI IV-2b and OpenBMI datasets. Across all experiments, ResTL achieves the
best average accuracy when employing Conformer as the encoder. Notably, the
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Fig. 2. t-SNE of calibrated signals on BCI IV-2b. (Blue: Right TS EEG signals, Red:
Left TS EEG signals, Green: Calibrated signals to right, Violet: Calibrated signals
to left). Calibrated signals generally have similar task-dependent features as TS EEG
signals corresponding to their respective target classes i.e., (Blue, Green) and (Red,
Violet) are closely clustered. While all subject-dependent features are clustered in the
same group, indicating similar subject-dependent features. This clearly highlights that
subject characteristics in RS EEG signals are preserved during calibration.

accuracy consistently improved in most cases when compared with the baselines
e.g., EEGNet and Conformer. This suggests that the calibrated signals are ad-
vantageous in adapting the model to the target subject. Furthermore, ResTL
outperforms BCM, exceeding +2% on three datasets. BCM utilizes RS EEG
signals to correct extracted features alone, thus limiting its ability to adapt the
model to the target subject. This highlights that ResTL utilizes the RS EEG
signals more effectively compared to BCM. In Appendix, we report the classifi-
cation accuracy for each subject on BCI IV-2a and BCI IV-2b.

The distribution of the calibrated signals. Fig. 2 presents the t-SNE visu-
alizations of both task-dependent and subject-dependent features extracted from
the calibrated signals on the BCI IV-2b dataset. For comparison, we also visu-
alize both features from the TS EEG signals from the target subject. The task-
dependent features are clustered closely to their corresponding classes, suggest-
ing that signals calibrated to the right exhibit similar task-dependent features as
right EEG signals, and vice versa. Additionally, all subject-dependent features
are clustered together regardless of their class, indicating that the calibrated
signals preserve the original subject characteristics. These findings support the
design of ResTL in using RS EEG signals, including performance gains.

Effect of RS EEG signals and subject-dependent features We compare
ResTL with two inversely image synthesizing methods from the pretrained clas-
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Table 2. Comparison with TS EEG signal synthesis methods when (EEG-
Net/Conformer) are employed. RS and SF indicate whether to use the RS signals
and the subject-dependent features, respectively.

Method RS SF BCI IV-2a BCI IV-2b

DeepDream 57.00/61.40 67.51/69.32
DeepDream 59.86/62.13 72.10/71.16

DeepInversion 49.12/50.64 65.15/70.77
DeepInversion 58.79/62.55 71.77/71.17

ResTL 62.07/65.09 73.13/73.76

Table 3. Classification accuracy of ResTL with (EEGNet/Conformer) corresponding
to varying numbers of RS signals. The numbers in each column of the first row represent
the percentile of the total number of RS EEG signals used.

Dataset 20% 40% 60% 80% 100%

BCI IV-2a 60.07/63.33 60.60/63.89 61.19/64.59 61.46/64.73 62.07/65.09
BCI IV-2b 72.58/72.88 72.66/73.28 72.90/73.35 73.02/73.58 73.13/73.76

sifier e.g., DeepDream [16] and DeepInversion [25] to assess the importance of
RS EEG signals and subject-dependent features. For comparison, we synthe-
size TS EEG signals from both noise and RS EEG signals using each synthesis
method, and then adapt the model with the synthesized signals. Table 2 presents
classification results on BCI IV-2a and BCI IV-2b datasets with EEGNet and
Conformer as encoders. Here, DeepDream and DeepInversion without RS EEG
signals report significantly lower accuracy compared to the results with RS EEG
signals. This validates our assertion that the RS EEG signals containing task
characteristics are beneficial for model adaptation in EEGMI classification. Also,
ResTL yields the best performance, showing the subject-dependent features can
help preserving subject characteristics while calibrating RS EEG signals.

The effect of the number of the RS EEG signals. We present the clas-
sification accuracy corresponding to varying numbers of RS EEG signals in Ta-
ble 3 on the BCI IV-2a and BCI IV-2b datasets. We observe a linear increase
in performance as the number of RS EEG signals increases. This suggests that
additional RS EEG signals contribute abundant information about the target
subject, thereby enhancing classification performance.

4 Conclusion

We present a novel subject-adaptive transfer learning strategy for EEGMI classi-
fication, leveraging the calibration of RS EEG signals. Our approach comprises
feature disentanglement and subject-dependent feature constraint during cali-
bration. Subsequently, we fine-tune the model using the calibrated signals to
adapt it to the target subject. Extensive experiments demonstrate the effective-
ness of our approach in improving the applicability of EEG MI classification
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across subjects, particularly in scenarios where TS EEG signals of the target
subject are unavailable. In future studies, we aim to explore the integration of
meta-learning strategies, especially in scenarios where only a few target subject
samples are available.
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