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Abstract. Generalist segmentation models are increasingly favored for
diverse tasks involving various objects from different image sources. Task-
Incremental Learning (TIL) offers a privacy-preserving training paradigm
using tasks arriving sequentially, instead of gathering them due to strict
data sharing policies. However, the task evolution can span a wide scope
that involves shifts in both image appearance and segmentation seman-
tics with intricate correlation, causing concurrent appearance and se-
mantic forgetting. To solve this issue, we propose a Comprehensive Gen-
erative Replay (CGR) framework that restores appearance and semantic
knowledge by synthesizing image-mask pairs to mimic past task data,
which focuses on two aspects: modeling image-mask correspondence and
promoting scalability for diverse tasks. Specifically, we introduce a novel
Bayesian Joint Diffusion (BJD) model for high-quality synthesis of image-
mask pairs with their correspondence explicitly preserved by conditional
denoising. Furthermore, we develop a Task-Oriented Adapter (TOA) that
recalibrates prompt embeddings to modulate the diffusion model, mak-
ing the data synthesis compatible with different tasks. Experiments on
incremental tasks (cardiac, fundus and prostate segmentation) show its
clear advantage for alleviating concurrent appearance and semantic for-
getting. Code is available at https://github.com/jingyzhang/CGR.
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1 Introduction

For medical image segmentation, there is an increasing demand for a generalist
model capable of handling diverse tasks, involving multiple objectives in various
imaging conditions [15,7,11]. As data for different tasks is often dispersed across
clinical departments with stringent data sharing policies [17], aggregating these
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task data as a consolidated set is impractical for model training [14] while Task-
Incremental Learning (TIL) emerges as a storage-efficient and privacy-protecting
paradigm. It enables a generalist model to learn from sequentially arriving tasks,
where, notably, these tasks vary widely without predefined restrictions, addressing
diverse objectives even across different anatomical regions and imaging devices.

A straightforward TIL approach is to consecutively finetune the model using
only the current task, yet leading to dramatic failure on previously learned tasks,
attributed to: 1) co-occurrence of appearance discrepancy and semantic shift, as
tasks can evolve in a wide scope that involves not only heterogeneous data from
multiple resources but also varying objectives with distinct anatomy [15]; and 2)
ignorance of appearance-semantics correspondence, making the model’s memo-
rizability even fragile to such drastic task shifts [9]. We identify this phenomenon
as concurrent appearance and semantic forgetting, which is under-studied in TIL.

However, in contrast to this challenging TIL scenario where appearance and
semantic forgetting are intrinsically coupled, prevalent research recognizes these
forgetting problems separately, addressing each by customized paradigms. Specif-
ically, Class-Incremental Learning (CIL) alleviates semantic forgetting for an in-
creasing variety of segmentation objectives within a confined region [14] through
distilling [4,27] and transferring [12,23] semantic prototypes. Nevertheless, in the
TIL context, where objectives often span entirely different regions with substan-
tial appearance discrepancies, CIL methods would suffer intractable appearance
forgetting that hinders the reliability of semantic transfer and distillation [14,4].
In addition, Domain-Incremental Learning (DIL) combats appearance forgetting
for a deterministic objective via style regularization [10,8,24] and appearance re-
covery using image-only generative replay with error-prone mask reuse [9,3]. Yet,
in TIL with varying objectives, such intricate semantic shift disrupts the style-
oriented regularization and even makes the image-only replay dominated by the
current task objective [9], leading to semantic forgetting in DIL methods for past
objectives. Overall, while existing DIL and CIL effectively tackle either appear-
ance or semantic forgetting individually, they fall short of a comprehensive TIL
perspective that simultaneously considers both issues with high correspondence.

Based on the above issues, compared with traditional DIL and CIL schemes,
the main challenge in TIL lies in how to construct a unified framework that com-
prehensively overcomes concurrent appearance and semantic forgetting, rather
than treating them separately. Inspired by the practical data rehearsal [26], our
insight involves synthesizing both images and their corresponding segmentation
masks to simulate diverse past task data, which serves as a comprehensive replay
mechanism to recover the coupled image appearance and segmentation semantics
for memory evoking. Recently, diffusion models [5] have provided a cutting-edge
image synthesis approach especially for the medical field [16], yet they are limited
in simultaneously synthesizing the corresponding segmentation masks due to the
ignorance of essential image-mask correlation [1]. Moreover, diffusion models ex-
hibit a decent versatility in switching between synthesis tasks under the guidance
of text prompts [19] with Contrastive Language-Image Pretraining (CLIP)-based
embedding [18]. However, this pretrained embedding poses a significant domain
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Fig. 1. Illustration of our proposed Comprehensive Generative Replay (CGR) frame-
work for task-incremental learning, e.g., on prostate, fundus, and cardiac segmentation.
Specifically, we synthesize paired images and segmentation masks to simulate past task
data, by adopting a Bayesian Joint Diffusion (BJD) model to preserve image-mask cor-
respondence (Sec. 2.1), and equipping a Task-Oriented Adapter (TOA) on the CLIP-
based embedding to modulate the diffusion model for scalable data synthesis (Sec. 2.2).
When encountering a new task, we leverage replayed past task data to evoke the faded
memory, and update it to include this new task knowledge for future replays (Sec. 2.3).

gap for our customized medical context [11], misguiding the diffusion model and
impeding its scalable data synthesis for replaying diverse tasks. These insights
motivate us to pursue comprehensive replay using a diffusion model, focusing on
two aspects: preserving crucial image-mask correspondence, and regulating the
CLIP-based embedding to make data synthesis compatible with diverse tasks.

In this paper, we present to our knowledge the first TIL paradigm for medical
image segmentation, accommodating a wide task scope with diverse objectives.
Our contributions are three-fold: 1) We propose a Comprehensive Generative Re-
play (CGR) framework to reduce concurrent appearance and semantic forgetting
across diverse tasks, by generating image-mask pairs to reproduce past task data;
2) We design a novel Bayesian Joint Diffusion (BJD) model for structure-realistic
synthesis of image-mask pairs, formulating their correspondence as conditional
distributions and optimizing through conditional denoising; and 3) We propose
a Task-Oriented Adapter (TOA) that recalibrates the CLIP-based embedding to
modulate the diffusion model, promoting synthesis scalability for diverse tasks.
We evaluate our method on tasks for cardiac, fundus, and prostate segmentation,
showing its minimal forgetting and clear advantages over DIL and CIL methods.

2 Method

In the Task-Incremental Learning (TIL) scenario, we train a segmentation model
fθ with sequentially arriving tasks. At each learning round t, we only obtain data
from the current task Dt = {X t,Yt} of paired images and segmentation masks,
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without access to past tasks {Di}t−1
i=1. Fig. 1 illustrates our Comprehensive Gen-

erative Replay (CGR) framework to reduce concurrent appearance and semantic
forgetting, as X t and Yt both have diverse distributions under drastic task shifts.

2.1 Bayesian Joint Diffusion Model

To combat concurrent appearance and semantic forgetting in TIL, we synthesize
paired images and segmentation masks to mimic past task inputs using diffusion
models [5]. To achieve this, a naive way is to directly model the joint distribution
of images and masks [25], but their correspondence is often disrupted and even
ignored [1]. Therefore, we propose a Bayesian framework to preserve image-mask
correspondence, ensuring precise semantics well-aligned in the recovered images.
Naive Joint Diffusion (NJD) Model. To synthesize paired images and masks
using a diffusion model, a basic idea is to learn their joint distribution through
applying forward and reverse processes [5] on image-mask pairs [1]. It should be
performed in each previous learning round to simulate past task data Di∈[1:t−1].
Specifically, in the forward process, given an original image-mask pair (x0, y0) of
the task Di = {X i,Yi}, we gradually add Gaussian noise to it, and achieve noisy
pairs {(xk, yk)}Kk=1 over K steps for training a denoising network ϵθ. Then, this
ϵθ is utilized in the reverse process to iteratively recover (x0, y0) from (xK , yK).

The denoising network ϵθ can be trained with the Maximum Likelihood Esti-
mation (MLE) on the image-mask joint distribution, i.e., max log p(x, y). It could
be simplified for the joint denoising score matching [1], under a naive assumption
that images and masks are nearly independent [25] with their correlation being
corrupted by noise added in the forward process. Specifically, in the forward step
k, noise ϵx and ϵy are added to x0 and y0 of the task Di, respectively, leading
to xk =

√
ᾱkx0 +

√
1− ᾱkϵx and yk =

√
ᾱky0 +

√
1− ᾱkϵy with a noise level

ᾱk. Then, given these as inputs, ϵθ is trained to jointly predict both noise as a
multi-channel output [ϵx, ϵy] to recover the image-mask distribution in this task:

LDi

NJ(ϵθ) = Ek,ϵx,ϵy,(x0,y0)∼Di

[
∥[ϵx, ϵy]− ϵθ(xk, yk, k)∥22

]
. (1)

However, the correspondence between images and masks is easily distorted by the
random noise added simultaneously to both elements, especially with noise levels
increasing gradually in the forward process. It can cause misaligned appearance
and semantics, hampering the synthesis of structure-realistic image-mask pairs.
Bayesian Joint Diffusion (BJD) Model. To solve this problem, we propose a
Bayesian framework that leverages conditional distributions to model the image-
mask correspondence. To this end, the MLE objective can be reformulated as:

max log p(x, y) = max
[
log p(x)p(y) + log p(x|y) + log p(y|x)

]
, (2)

where max log p(x)p(y) can be regarded as a degenerated NJD case [25] under the
assumption of independence with correspondence being distorted, converted to a
similar joint denoising as Eq. (1). Moreover, max log p(x|y) and max log p(y|x) for
conditional distributions capture interactions across images and masks, enforcing
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alignment between appearance and semantics. Notably, they could be simplified
for conditional denoising [6], where the noise-free mask y0 and image x0 are used
alternatively as reliable references for clear unidirectional correspondence, rather
than adding noise simultaneously that would corrupt directional correspondence:

LDi

BJ(ϵθ) = Ek,ϵx,ϵy,(x0,y0)∼Di

[
∥[ϵx, ϵy]− ϵθ(xk, yk, k)∥22 + ∥[ϵx, 0]− ϵθ(xk, y0, k)∥22

+ ∥[0, ϵy]− ϵθ(x0, yk, k)∥22
]
. (3)

Intuitively, conditional image denoising with ϵθ(xk, y0, k) restores image appear-
ance that aligns with semantics from the clear mask y0, while conditional mask
denoising with ϵθ(x0, yk, k) captures accurate semantics in the clean image x0.
Although conditional denoising incurs higher FLOPs during training, it does not
involve extra learnable parameters, avoiding higher FLOPs during inference.

2.2 Task-Oriented Adapter (TOA)

In our TIL scenario, BJD needs to scale across diverse data distributions of pre-
vious tasks, in order to simulate each task effectively. To ensure such versatility, a
practical approach is to modulate the diffusion model with text prompts encoded
as CLIP-based embedding [19]. However, this embedding is pretrained on natural
language-image databases [18] and may not be compatible with our customized
tasks [11]. To address this problem, we propose a Task-Oriented Adapter (TOA)
to recalibrate the prompt embedding, and leverage a cross attention mechanism
to modulate the BJD model for scalable data synthesis across diverse tasks.
TOA Architecture. We establish a text prompt template [11] for task char-
acterization: “[M] images of [A] for [SO]”, where [M], [A] and [SO] represent the
modality, region, and objective, respectively. Given a task with index i, the text
prompt is fed into the CLIP encoder [18] to obtain the prompt embedding ei,
which is further recalibrated by a task-specific, lightweight two-layer adapter ψi

θ,
ensuring scalability for various tasks in a memory-efficient way:

wi = ei + γiψi
θ(e

i), (4)

where γi is a learnable factor to modify the recalibration strength.
Modulated Denoising Network. The recalibrated embedding wi is utilized to
modulate BJD for task-specific data synthesis. We combine wi with the output zj
from each intermediate layer j of the denoising network ϵθ using cross-attention
τj(·) [21], assembling them into a modulated denoising network µθ for BJD:

µθ = {τj(wi, zj)}j , where τj(w
i, zj) = σ(

(Qjzj) · (Kjw
i)T√

dj
) · (Vjwi). (5)

Here, Qj , Kj , and Vj are learnable query, key, and value for cross attention in
each layer j. Moreover, dj is the channel number and σ(·) is the softmax function.
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2.3 Replay for Memory Evoking and Updating

Based on the BJD with TOA, we perform DDIM sampling [20] to generate image-
mask pairs for replaying past task data, denoted as Ri∈[1:t−1]. The replayed data
evokes faded memory when learning on a new task, and this memory should also
be updated to include the new task for subsequent replay in future rounds [3].
Memory Evoking. To evoke previous memory when learning on a new task, we
take the replayed past task datasets Ri∈[1:t−1] to jointly train the segmentation
model fθ together with the current task data Dt, where the segmentation loss
Lseg is calculated for Dt and Ri using cross-entropy with a trade-off α:

LME(fθ) = LDt

seg(fθ) + α
∑t−1

i=1
LRi

seg(fθ). (6)

Memory Updating. In addition to mimicking past tasks, the memory-evoking
diffusion model should also simulate the current task data for subsequent replays
in TIL. Therefore, we update the BJD model using loss functions measured on
Dt and Ri with a trade-off β, while equipping the modulated denoising network
µθ through TOA for scalable data synthesis:

LMU(µθ) = LDt

BJ(µθ) + β
∑t−1

i=1
LRi

BJ(µθ). (7)

3 Experiments

Dataset. We evaluated our method on three tasks: 1) cardiac MRI segmentation
[2] with 320 subjects for three structures of the left ventricle, the right ventricle,
and the left ventricular myocardium; 2) fundus segmentation [22] with 1060 sub-
jects for the optic cup and disc; and 3) prostate MRI segmentation [13] with 116
subjects. They present concurrent appearance and semantic shifts due to varying
imaging conditions and diverse objectives. For data pre-processing, cardiac and
prostate images were resampled to unit spacing and resized to 256×256 in the
axis plane, while fundus images were cropped to 800×800 around the optic disc
and resized to the same size 256×256. In each task, the dataset was split into
60%, 15%, and 25% for training, validation, and testing, respectively.
Experimental Setting. We organized these segmentation tasks in two learn-
ing schedules: SC→F→P with data arriving sequentially for cardiac, fundus and
prostate segmentation, and SP→F→C as a reverse order. After completing learn-
ing on the final task, we evaluated the model on current and previous tasks using
the Dice Score Coefficient (DSC) and the 95% Hausdorff Distance (HD).
Implementation. We used 2D Res-UNet as our segmentation backbone due
to its strong generalist transferability [7]. It was trained using Adam Optimizer
with learning rate 2×10−4, batch size 16, and iteration number 4×104. For BJD
with K = 1000 forward steps, we employed a 2D-UNet as the denoising network
[5], using AdamW Optimizer with learning rate 1×10−4, batch size 8 and itera-
tion number 4×105. We empirically synthesized 3000 image-mask pairs for each
previous task. We empirically set α and β as 0.25 for a suitable trade-off [9].
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Table 1. Performance comparison after learning consecutively on Cardiac (C), Fundus
(F), and Prostate (P) segmentation tasks, with two different learning orders SC→F→P

and SP→F→C . Bold font denotes the best performance in this learning process (except
JointTrain which performs offline and serves as the upper bound).

Learning order SC→F→P (Cardiac → Fundus → Prostate) SP→F→C (Prostate → Fundus → Cardiac)

Task Previous Current Mean Previous Current Mean Previous Current Mean Previous Current MeanCardiac Fundus Prostate Cardiac Fundus Prostate Prostate Fundus Cardiac Prostate Fundus Cardiac
Metric DSC (%) ↑ HD (pixel) ↓ DSC (%) ↑ HD (pixel) ↓

BaseLine JointTrain 89.79 89.34 90.81 89.98 2.02 5.10 3.36 3.49 90.81 89.34 89.79 89.98 3.36 5.10 2.02 3.49
FineTune 0.03 0.02 91.06 30.37 NaN NaN 2.69 NaN 0.00 0.00 89.60 29.87 NaN NaN 2.11 NaN

DIL
EWC [8] 21.84 49.41 73.37 48.20 139.89 25.88 15.31 60.36 0.27 44.59 58.47 34.44 151.96 62.38 38.84 84.40
LwF [10] 46.76 82.37 88.08 72.40 12.95 9.44 6.49 9.63 19.34 77.89 86.94 61.39 11.95 12.50 3.89 9.45
GAR [3] 86.12 84.39 90.30 86.94 4.63 11.76 2.93 6.44 73.27 84.51 89.19 82.33 5.61 8.38 2.18 5.39

CIL
PLOP [4] 22.47 72.39 81.96 58.94 32.54 15.93 13.21 20.56 68.62 79.16 85.18 77.65 5.25 13.53 5.10 7.96
MEIL [12] 39.84 74.05 88.20 67.36 20.68 12.30 5.84 12.94 4.51 41.42 86.54 44.16 24.34 73.17 3.98 33.83
HSI [14] 85.40 81.96 89.78 85.72 5.56 10.82 2.77 6.38 67.60 81.27 89.24 79.37 7.89 14.70 2.09 8.23

TIL
CGR (-BJD) 85.43 86.02 90.28 87.24 3.89 7.16 2.74 4.60 83.02 85.36 89.34 85.91 5.52 7.22 2.02 4.92
CGR (-TOA) 86.77 86.78 90.47 88.01 3.50 6.62 3.26 4.46 85.08 85.89 89.31 86.76 4.72 7.16 2.00 4.63
CGR (ours) 87.48 87.99 90.68 88.71 2.81 5.83 2.93 3.86 88.00 87.40 89.31 88.24 4.68 6.06 2.07 4.27
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Previous
task

Ca
rd

ia
c

Fu
nd

us

Ground Truth

Current
task

Pr
os

ta
te

Fig. 2. Segmentation examples by learning on sequentially arriving tasks for cardiac,
fundus, and prostate segmentation.

Comparison with State-of-the-Arts. We compared our TIL framework called
Comprehensive Generative Replay (CGR), including a Bayesian Joint Diffusion
(BJD) model and a Task-Oriented Adapter (TOA), with state-of-the-art meth-
ods: 1) Baselines: JointTrain that gathers all task data for joint training, and
FineTune that sequentially finetunes the model using only current task data;
2) DIL schemes: EWC [8] and LwF [10] using appearance regularization terms,
and GAR [3] based on generative appearance replay without concurrent seman-
tics synthesis; and 3) CIL schemes: PLOP [4] using class distillation and MEIL
[12] transferring class prototypes, and HSI [14] alleviating semantic shift under
slight data heterogeneity, yet halting in an extremely simple TIL case restricted
in an enclosed region, unlike our scenario with a broader task range.

As presented in Table 1, FineTune fails drastically for previous tasks, yielding
0.00% DSC and NaN HD due to concurrent appearance and semantic forgetting
during task evolution. Although DIL and CIL schemes can outperform FineTune,
their advantages are modest, addressing forgetting problems partially for either
appearance or semantics. Notably, GAR achieves a relatively higher performance
in the DIL scheme by predicting segmentation masks on the replayed images to



8 W. Li et al.

w
/o

 B
JD

w
/ B

JD

Cardiac Fundus Prostate w/ TOAw/o TOA
(a) Example visualization (b) t-SNE visualization

Fundus ProstateCardiac

Fig. 3. Ablation analysis. Synthesized image-mask pairs are displayed in (a) with and
without BJD, and their t-SNE visualization is shown in (b) with and without TOA.

generate restored yet error-prone semantics [9], while HSI stands out in the CIL
scheme owing to its dual-flow module with batch renormalization layers to resist
to mild image heterogeneity alongside semantic shift. However, their performance
is still hindered in the TIL scenario, where tasks arrive with not only significant
data discrepancy but also entirely different objectives. Our CGR shows the best
performance closer to JointTrain, e.g. substantially outperforming GAR and HSI
with 1.77% and 2.99% DSC for the learning order SC→F→P , demonstrating its
clear advantages in addressing both appearance and semantic forgetting for TIL.

Furthermore, Fig. 2 visualizes the segmentation results for previous and cur-
rent tasks. Most methods exhibit sufficient adaptation capability on the current
task, except EWC and PLOP with over-strong regularization terms. Our CGR
achieves the precise shape and smooth boundary, especially for previous tasks,
whereas other methods show considerable limitations.
Effectiveness of Bayesian Joint Diffusion (BJD). We visualize in Fig. 3(a)
the synthesized image-mask pairs for cardiac, fundus and prostate segmentation.
The image-mask pairs generated without BJD, i.e., using the Naive Joint Diffu-
sion (NJD) instead, often suffer irregular structure fracture and disruption. BJD
provides the structure-realistic data synthesis with normal shapes preserved for
different segmentation objectives, significantly improving our CGR method over
the BJD-deactivated counterpart (-BJD), as shown in Table 1 for ablation study.
Contribution of Task-Oriented Adapter (TOA). In Fig. 3(b), we use t-SNE
to visualize the distributions of synthesized image-mask pairs with and without
TOA attached to the BJD model. TOA enhances the compactness of inner-task
distribution and the separability of inter-task distribution, promoting scalability
of data synthesis across tasks. Integrating TOA in CGR has superiority over the
TOA-deactivated counterpart (-TOA), as shown in Table 1 for ablation study.
Robustness to Learning Order. We validate the robustness of our method to
variations in the learning order, as shown in Table 1 using forward and reversed
orders. Other methods exhibit unstable performance and significant fluctuations
under different learning orders. Notably, our CGR consistently outperforms these
methods by a stable and substantial margin, highlighting its strong robustness.
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4 Conclusion

This paper presents a novel TIL framework for medical image segmentation, ad-
dressing concurrent appearance and semantic forgetting as tasks evolve widely.
To achieve this, we propose a Comprehensive Generative Replay (CGR) frame-
work that synthesizes past task data including paired images and masks, where
their correspondence is captured by a Bayesian Joint Diffusion (BJD) model
with Task-Oriented Adapter (TOA) for synthesis scalability. The broader sig-
nificance of our work may lie in the extension on foundation models, providing
a promising avenue for accumulating generalist skills in artificial general intelli-
gence. In the future, we will conduct more comprehensive experiments to validate
the robustness of CGR on multi-organ or tumor segmentation datasets.
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