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Abstract. Video inpainting fills in corrupted video content with plausi-
ble replacements. While recent advances in endoscopic video inpainting
have shown potential for enhancing the quality of endoscopic videos,
they mainly repair 2D visual information without effectively preserving
crucial 3D spatial details for clinical reference. Depth-aware inpainting
methods attempt to preserve these details by incorporating depth in-
formation. Still, in endoscopic contexts, they face challenges including
reliance on pre-acquired depth maps, less effective fusion designs, and
ignorance of the fidelity of 3D spatial details. To address them, we intro-
duce a novel Depth-aware Endoscopic Video Inpainting (DAEVI) frame-
work. It features a Spatial-Temporal Guided Depth Estimation module
for direct depth estimation from visual features, a Bi-Modal Paired Chan-
nel Fusion module for effective channel-by-channel fusion of visual and
depth information, and a Depth Enhanced Discriminator to assess the
fidelity of the RGB-D sequence comprised of the inpainted frames and
estimated depth images. Experimental evaluations on established bench-
marks demonstrate our framework’s superiority, achieving a 2% improve-
ment in PSNR and a 6% reduction in MSE compared to state-of-the-art
methods. Qualitative analyses further validate its enhanced ability to
inpaint fine details, highlighting the benefits of integrating depth infor-
mation into endoscopic inpainting.
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1 Introduction

In endoscopic videos, occlusions or artifacts, such as reflections or instrument
shadows, significantly degrade the visual quality. This issue is commonly known
as corruptions, hiding critical anatomical details required for endoscopy exami-
nations and surgeries, affecting clinical decision significantly [17]. As a technique
to improve video quality by reconstructing the corrupted regions based on the
uncorrupted information, video inpainting is introduced by [21,22,1,6] into the
endoscopic scenario to mitigate the corruptions, known as endoscopic video in-
painting. While these methods could reconstruct 2D visual information in cor-
rupted endoscopic videos, they suffer from preserving vital 3D spatial details,
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Fig. 1. Comparison with previous methods by Newson et al. [18] and Daher et al. [6]
on corrupted frames from the HyperKvasir dataset [4]. Red boxes highlight significant
differences. Reference frames are near frames with less corruption. Our inpainted con-
tent is not only visually plausible but also contextually realistic.

resulting in the artifact and spatial inconsistency at the inpainted regions, such
low-fidelity performance limits their reliability for clinical applications.

Employing depth map to complement 3D spatial information is wildly applied
in general video painting [16,23,15], which offers a promising solution to preserve
3D spatial awareness for endoscopic video inpainting. Nevertheless, applying this
solution is hindered by three significant challenges: First, it is not feasible to pre-
acquire endoscopic depth maps, as the depth sensor is not available in standard
monocular endoscopic cameras [9]. Second, given the learned depth features from
deep-learning-based methods, simply concatenating visual features channel-wise
and using vanilla convolution for fusion [15] fails to effectively exploit the depth
representation, as they tend to capture redundant representations from visual
features [14], losing the 3D spatial details complementing by depth maps. Third,
none of these methods [16,23,15] assess the 3D spatial fidelity in RGB inpainted
outputs, which compromises the reliability of inpainted content.

To address these challenges, we propose the Depth-Aware Endoscopic Video
Inpainting (DAEVI) framework that provides more reliable inpainted details for
improved clinical reference. It consists of a Spatial-Temporal Guided Depth Esti-
mation (STGDE) module, a Bi-Modal Paired Channel Fusion (BMPCF) module,
and a Depth-Enhanced Discriminator (DED), each designed to overcome the re-
spective challenge. First, our STGDE module extracts depth information during
visual feature learning to provide 3D spatial information, thus avoiding the re-
quirement for pre-acquired depth maps as input. Second, the BMPCF module
conducts a tailor-made feature fusion algorithm to better correlate the 3D spa-
tial relevancy between visual and depth features by pair-wise fusing each visual
and depth feature. Third, our DED assesses the 3D spatial fidelity of the RGB-
D sequence formed by the inpainted frames and estimated depths, promoting
realistic outputs with plausible 3D spatial details.

We evaluate our method on the HyperKvasir endoscopic video dataset [4]
and compare it with the corresponding benchmark [24,6]. The quantitative ex-
periments demonstrate that our proposed DAEVI outperforms state-of-the-art
approaches [6], achieving approximately 2% better Peak Signal-to-Noise Ra-
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tio (PSNR) and 6% lower Mean Squared Error (MSE). Our qualitative results
show that DAEVI inpaints more fine-grained details, such as microvessels and
the boundary of instruments, as depicted in Fig. 1. Furthermore, we directly
apply our DAEVI trained on HyperKvasir to the SERV-CT datasets [8], demon-
strating our method’s generalizability in endoscopic video inpainting. Our source
code is available on https://github.com/FrancisXZhang/DAEVI.

Our work contributes in several ways, as outlined below:

1. To the best of our knowledge, DAEVI is the first endoscopic video inpaint-
ing framework to incorporate depth information. The effectiveness is demon-
strated by comprehensive experiments.

2. We propose a Spatial-Temporal Guided Depth Estimation module, to trans-
late depth representation directly from latent visual features, hence circum-
venting the challenge of acquiring depth maps during endoscopic surgery.

3. We design a Bi-Modal Paired Channel Fusion module that fuses each pair
of channels from visual and depth features, which effectively leverages 3D
spatial details in endoscopic inpainting.

4. We introduce a Depth-Enhanced Discriminator within our end-to-end op-
timization, which assesses the fidelity of the inpainted RGB-D sequence,
promoting realistic outputs with more plausible 3D spatial details.

2 Methodology

Given the input endoscopic video frames X ∈ RT×H×W×3, we leverage the
binary mask M ∈ RT×H×W×1, which identifies the corrupted regions, to get the
input XM = X⊙M . After processing by our DAEVI to generate the uncorrupted
output Ŷ ∈ RT×H×W×3. ⊙ is the element-wise product, H × W is the spatial
dimension. The whole formulation is denoted as: Ŷ = DAEV I(XM ).

The overall architecture is shown in Fig. 2. First, DAEVI employs a convo-
lutional encoder to embed XM into compact visual features F ∈ RH

4 ×W
4 ×4C to

effectively represent local visual features. Following this, our Spatial-Temporal
Guided Depth Estimation (STGDE) module learns multi-level visual features
and translates them into depth maps. Subsequently, the proposed Bi-Modal
Paired Channel Fusion (BMPCF) module fuses visual and depth features to ob-
tain an integrated representation with enhanced 3D spatial details. After that,
a convolutional decoder reconstructs the final inpainted frames Ŷ . During train-
ing, our Depth-Enhanced Discriminator (DED) assesses the visual and spatial
fidelities of the inpainted RGB-D sequence.

2.1 Spatial-Temporal Guided Depth Estimation (STGDE)

Depth-aware endoscopic video inpainting faces a unique challenge in acquiring
depth data, as the standard endoscopic cameras are technically unable to provide
the raw depth [9]. To address this challenge, we propose a STGDE module to
translate depth features from latent visual features. STGDE involves multiple

https://github.com/FrancisXZhang/DAEVI
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Fig. 2. The overview of our framework. First, our Spatial-Temporal Guided Depth
Estimation module translates depth information from corrupted frames (See 2.1). Sec-
ond, our Bi-Modal Paired Channel Fusion module effectively fuses visual features with
depth features (See 2.2). Third, our Depth Enhanced Discriminator assesses the fidelity
of the inpainted RGB-D sequence (See 2.3).

transformer blocks TB and a depth decoder DecD. Each TB is a spatial-temporal
transformer block [24] with a spatial enhancement to enhance the local feature
learning, thereby improving the representation ability. DecD aims to gather the
latent visual feature across all TBs for effective depth estimation.

Specifically, after the encoder, corrupted frames XM are embedded as visual
features F , which are fed into the first transformer block TB1. The output from
TBi is subsequently fed into the following TBi+1, where i ∈ (1, Ns−1) and Ns is
the number of TBs. The F i−1, as the input for each TBi, are linearly transformed
into query Qi, key Ki, and value V i separately. Different from STTN [24], we
introduce a 3 × 3 depth-wise convolution P ′i

V (·) to enhance the V i for better
spatial feature learning:

Qi,Ki, V i = P i
Q(F

i−1), P i
K(F i−1), P i

V (F
i−1) + P ′i

V (F
i−1), (1)

where P i
Q,K,V (·) denote 1x1 2D convolutions. After that, we split each of Qi, Ki,

and V i into n = r1 × r2 smaller patches Qi
p, Ki

p, and V i
p ∈ RTn×c×h/r1×w/r2 ,

where h/r1 × w/r2 is the spatial dimension of patches. Then we utilize the
patched Qi

p, Ki
p, and V i

p to get the attention output F i
att:

Si = Qi
p(K

i
p)

⊤/
√
r1 × r2 × c, (2)

F i
att = softmax(Si ⊙M)V i

p , (3)

where Si is the attention score, and M denotes a resized binary mask matrix
indicating the currupted regions [24]. Then, after a convolutional projection P i

F

followed by a feed-forward network FFN i, we obtain the output F i of TBi:

F i = FFN i
(
P i
F

(
F i
att

))
. (4)
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To translate depth maps D̂ from latent visual features, we aggregate Fatt

across all TBs to gather the multi-layer visual representation. After a convolu-
tional projection P i

D, the depth decoder generate the depth maps D̂:

D̂ = DecD

(
Ns∑
i=1

P i
D

(
F i
att

))
. (5)

2.2 Bi-Modal Paired Channel Fusion (BMPCF)

Endoscopic depth-aware inpainting encounters a challenge in effectively inte-
grating depth with visual information, as the simple channel-wise concatenation
followed by a vanilla convolution is unable to fully exploit the correlation be-
tween depth and visual feature, especially in endoscopic scenes such complex
nature involving varied spatial structures [20].

To address this challenge and effectively enhance visual information with 3D
spatial details, we design a BMPCF module to correlate each visual and depth
feature by a tailor-made pair-wise fusion algorithm.

Specifically, given the depth maps D̂ translated by DecD, we first enlarge the
channel capacity of D̂ with a depth encoder EncD to obtain the embedded depth
feature FD, which has the same number of channels as the STGDE’s output
FNs . Then, to ensure each depth correlates precisely to the corresponding visual
feature, we sequentially interleave the sliced FNs and FD in channel-wise:

Fpair[:, 2i] =

{
FNs[:, i] for i = 0, 2, . . . , c− 2,

FD[:, i] for i = 1, 3, . . . , c− 1,
(6)

where c is the channel number of FNs and FD, also indicates the number of pairs.
After that, the group-wise convolution G(·) [13] is employed on Fpair to fuse each
pair of visual and depth features, producing the fused output Ff ∈ RT×c×h×w:

Ff = G(Fpair). (7)

In this way, each convolutional kernel facilitates the fusion between every
two adjacent channels consisting of one visual feature and one depth feature.
Subsequently, a convolutional decoder reconstructs inpainted frames Ŷ from Ff .

2.3 Depth-Enhanced Discriminator (DED)

Effectively assessing the spatial fidelity is critical in endoscopic depth-aware
inpainting, as minor inaccuracies, such as incorrect anatomical details, could
significantly impact clinical decisions [7]. While Generative Adversarial Net-
work (GAN) strategies [10] in previous depth-aware inpainting methods [23,15]
only enhance the fidelity of RGB content and ignore the fidelity in 3D spatial
details, resulting in unreliable outputs for clinical reference [15]. To this end, we
introduce DED during training, to comprehensively assess the RGB-D inpainted
endoscopic frames across spatial, temporal, and depth dimensions.
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Specifically, we followed [5] to build our DED with 6 3D convolutional blocks
to learn both spatial and temporal features for assessment. The inpainted frames
and depth are concatenated as the RGB-D data to be the input of DED. To
facilitate the assessment of the fidelity of the whole frames after inpainting,
both corrupted and non-corrupted regions are included for the adversarial loss
LADV = LGEN + LDED adopted from [10]:

LDED = E(D,Y )∼PData
[Relu(1−DED([D,Y ]))]+

E(D̂,Ŷ )∼PG
[Relu(DED([D̂, Ŷ ]))],

(8)

LGEN = −E(D̂,Ŷ )∼PG
[DED([D̂, Ŷ ])], (9)

To enhance parameter optimization efficiency, we adopt an end-to-end opti-
mization strategy for our DAEVI. Our full loss function is as follows:

L = λDLD + λILI + λGENLGEN + λPLP + λSLS , (10)

where λ denotes the weight of each loss term. LD and LI are the L1 reconstruc-
tion loss [25] for translated depth and inpainted frames, respectively. LP and LS

denote the perceptual loss and style loss, respectively [12] (details can be found
in our supplementary material). In each iteration, L and LDED optimize our
inpainting network and our DED, respectively.

3 Experiment

3.1 Experimental Setting

We evaluate our method against the existing benchmark established [6] on the
HyperKvasir endoscopic video dataset [4]. This dataset includes 373 videos with a
total of 889,372 frames, 343 for training and 30 for testing. Depth ground truth is
derived from a pre-trained endoscopic depth estimator [20] on unmasked frames,
which is needed only in training. Following the benchmark setting [6], we employ
the same masks and pseudo ground truth from [6] to identify corrupted regions
in frames and evaluate Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Mean Square Error (MSE) specifically for corrupted regions.

We configure the block number Ns = 8 and set the weights for λD, λP , λS ,
λI , and λGEN to [0.1, 0.1, 250, 1, 0.01]. We employ Adam optimizer with learning
rate = 1e-4, β1: 0, β2: 0.99. All experiments are trained on an NVIDIA TITAN
RTX 24G GPU with a batch size of 4 for 200k iterations. Training iterations
alternate between selecting 5 random or consecutive frames resized to 288 x 288
pixels. For inference, the model processes every 5 corrupted frames alongside 10
nearby corrupted frames sampled for reference, reassembling them into the full
video with a real-time processing speed of approximately 0.03 seconds per frame.

Additionally, Fig. 3 a) shows our method’s ability to inpaint highly plausi-
ble content on the SERV-CT dataset without specific fine-tuning, underscoring
our approach’s strong generalization capabilities. By applying the pre-trained
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Table 1. Inpainting Performance Comparison and Ablation Study. w/o STGDE: A
pre-trained depth estimator [20] is leveraged for depth estimation instead of STGDE;
w/o BMPCF: Simple concatenation is used for fusion instead of BMPCF; w/o DED:
A standard RGB discriminator [5] is used in GAN training instead of DED.

Methods PSNRCrop ↑ SSIMCrop ↑ MSECrop ↓
Arnold et al. [2] 19.909 0.559 895.222
Newson et al. [18] 22.27 0.650 543.636
STTN [24] 28.683 0.793 119.541
Daher et al. [6] 29.542 0.785 104.719
DAEVI (Full Framework) 30.126 0.797 97.873
w/o STGDE 29.801 0.788 105.150
w/o BMPCF 29.695 0.791 103.861
w/o DED 29.286 0.797 108.903

Fig. 3. Comparison of deep learning-based inpainting performance on the SERV-CT
dataset: a) Generalization Capability, and b) Depth Information Preservation.

DepthNet [20] to our inpainted frames, Fig. 3 b) reveals that our method im-
proves depth estimation, achieving the lowest Root Mean Squared Error (RMSE)
between the ground truth depth and the depth estimation after inpainting. This
further underscores our method’s superior effectiveness in preserving 3D spatial
details compared to existing methods.

3.2 Results

Comparison with Existing Methods In Table 1, we benchmark our DAEVI
against Arnold et al. [2], a diffusion-based approach; Newson et al. [18], employ-
ing temporal patches; STTN [24], a transformer-based method; and Daher et
al. [6], the state-of-the-art (SOTA) method in endoscopic video inpainting. Our
method outperforms existing methods across all metrics. These results highlight
the benefits of integrating depth information into endoscopic video inpainting.
Clinically, these improvements enhance the visibility of endoscopic videos [22],
crucial for accurate diagnostics and surgical planning.
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Table 2. Performance Analysis Across Depth Estimation Block Configurations.

Methods PSNRCrop ↑ SSIMCrop ↑ MSECrop ↓
DAEVI (First 4 Blocks) 29.921 0.792 100.851
DAEVI (Last 4 Blocks) 29.900 0.796 101.313
DAEVI (All 8 Blocks) 30.126 0.797 97.873

Table 3. Online Inference Performance Analysis

Methods PSNRCrop ↑ SSIMCrop ↑ MSECrop ↓
Daher et al. [6] 29.542 0.785 104.719
DAEVI 30.126 0.797 97.873
DAEVI (Online) 30.117 0.797 98.147

Qualitative Results To demonstrate our inpainting performance on corrupted
regions, we remove specular reflections and high reflection from instruments
in the HyperKvasir dataset [4] and the SERV-CT dataset, an external-body
endoscopic dataset with depth ground truth provided [8]. Figure 1 from the
HyperKvasir dataset illustrates our method more effectively restoring details
such as microvessels and the interface between instruments and organs. These
enhancements are crucial for safer and more efficient endoscopic operations [3].
More qualitative results can be found in our supplementary material.
Ablation Study Our ablation study in Table 1 shows that our full framework
yields the best results, highlighting the importance of each module. Notably,
removing DED lowers MSE and PSNR but doesn’t affect SSIM, which remains
comparable to the complete framework. This may be because DED significantly
enhances 3D spatial fidelity, which does not directly correspond to the features
assessed by SSIM [19], such as contrast and luminance.
Depth Estimation Block Configuration Analysis In a deep neural net-
work, shallower layers learn low-level texture features, while deeper layers learn
high-level semantics features [11]. Table 2 evaluates inpainting performance using
different configurations of the first 4, last 4, and all 8 blocks of STGCN for depth
estimation within the DAEVI framework. This analysis reveals that employing
all 8 blocks, which combines both low-level and high-level features, achieves op-
timal performance, highlighting the effectiveness of our current STGDE design.
Online Inference Performance Analysis Table 3 assesses DAEVI’s online
inference ability by modifying sampling to use only past frames as reference. Our
online performance still outperforms the SOTA method [6] referring both past
and future frames, demonstrating its potential for live endoscopic videos.

4 Conclusion and Discussions

In this paper, we propose the DAEVI framework, the first endoscopic video
inpainting framework designed to incorporate depth information to achieve re-
liable 3D spatial details. This work offers a potential solution to enhance the
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quality of endoscopic videos, facilitating informed clinical decision-making and
improving downstream tasks such as depth estimation [20]. Our DAEVI leverages
depth information from latent visual features of corrupted endoscopic frames
with STGDE, effectively fuses visual and depth information with BMPCF, and
assesses the fidelity of the RGB-D content with DED. Experimental evaluations
demonstrate its significant superiority compared to existing methods.

While our framework demonstrates improvements in inpainting performance,
it is not without limitations. As our work’s focus is on corruption inpainting, the
real-world applicability of DAEVI could still be influenced by the effectiveness of
any external corruption detection backbone. Future work could integrate existing
endoscopic corruption detection methods such as semantic segmentation [1] into
our framework, optimizing both corruption detection and inpainting tasks.
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