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Abstract. Recent advances in text-conditioned image generation dif-
fusion models have begun paving the way for new opportunities in the
modern medical domain, in particular, particularly in generating Chest
X-rays (CXRs) from diagnostic reports. Nonetheless, to further drive the
diffusion models to generate CXRs that faithfully reflect the complexity
and diversity of real data, it has become evident that a nontrivial learn-
ing approach is needed. In light of this, we propose CXRL, a framework
motivated by the potential of reinforcement learning (RL). Specifically,
we integrate a policy gradient RL approach with well-designed multiple
distinctive CXR-domain specific reward models. This approach guides
the diffusion denoising trajectory, achieving precise CXR posture and
pathological details. Here, considering the complex medical image envi-
ronment, we present “RL with Comparative Feedback” (RLCF) for the
reward mechanism, a human-like comparative evaluation that is known
to be more effective and reliable in complex scenarios compared to direct
evaluation. Our CXRL framework includes jointly optimizing learnable
adaptive condition embeddings (ACE) and the image generator, enabling
the model to produce more accurate and higher perceptual CXR qual-
ity. Our extensive evaluation of the MIMIC-CXR-JPG dataset demon-
strates the effectiveness of our RL-based tuning approach. Consequently,
our CXRL generates pathologically realistic CXRs, establishing a new
standard for generating CXRs with high fidelity to real-world clinical
scenarios. Project page: https://micv-yonsei.github.io/cxrl2024/
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1 Introduction

Diffusion probabilistic models (DPMs) [9, 28] have revolutionized conditional
image synthesis [26], particularly in the realm of medical imaging [5, 16, 24, 25],

∗ Equal contribution † Correponding author
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Fig. 1. The overview of CXRL. Our model employs policy gradient optimization with
multi-reward feedback to fine-tune both the image generator and ACE, producing
realistic and accurate CXRs that closely match the input report.‡

by enabling text-driven generation [3, 12]. This innovative approach addresses
medical field challenges, such as data scarcity and privacy concerns, offering a
promising avenue for synthetic medical data utilization in various applications
(i.e., privacy-free medical image data for medical education or research) [14].

However, generating medical images via text conditions is challenging with
diffusion models, mainly due to their inability to accurately represent subtle
diagnostic differences, while medical images have complex characteristics (i.e.,
minor tissue texture variations per patient or disease) [14]. This issue emerges
because of the reliance on approximating the log-likelihood objective of the train-
ing data, prompting the model to predominantly generate images that align
with the distribution of the training data [2, 6], thus failing to accurately repre-
sent minor variations characteristic of medical images. Meanwhile, recent com-
puter vision studies suggest treating diffusion denoising as a multi-step decision-
making problem [2, 6, 7, 18], allowing the use of policy gradient-based reinforce-
ment learning (RL) which can overcome the existing limitations. Motivated by
such potential, we first integrate policy-based RL into medical image synthesis by
tuning an image generator to enhance text-to-medical image generation using
non-differentiable reward functions. However, our empirical observations indi-
cated that solely optimizing the image generator limits the scope of pathological
expressions. Consequently, we introduce CXRL, jointly fine-tuning the image
generator and learnable adaptive condition embeddings (ACE) to condition the
image generation process flexibly, enriching pathological features represented.

Although prior works [2, 6, 7, 18] have successfully incorporated data-driven
human feedback models [15, 17] into RL for image generation, applying human
feedback models to medical image generation task presents unique and signif-
icant challenges. These challenges primarily stem from the “complexity of the
medical imaging environment”, which makes it difficult for humans to quantita-
tively express the overall quality of medical images with absolute numbers [22,
27]. Given these challenges, particularly in the context of complex and uncertain
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environments like medical imaging, the findings of Mussweiler and Posten [23]
stand out, illustrating that humans are better at making consistent and accurate
judgments through “relative comparison” rather than absolute evaluation.

Therefore, we adopt Reinforcement Learning with “Comparative” Feedback
(RLCF) method, similar to [7], which enhances the reliability of the feedback
mechanism by human-like comparative evaluation processes, a suitable feedback
for complex text-to-medical image generation environments (Fig. 1). Specifically,
RLCF assesses image pairs generated from ours and the anchor model, provid-
ing rewards for surpassing the anchor’s images and penalties when our model’s
images fall short of the anchor’s, which we categorize as negative actions. This
strategy employs both rewards and penalties, steering our model away from
producing images inferior to the anchor’s images. To sum up, our RLCF frame-
work not only mimics human feedback for a reliable training experience but also
integrates penalties to deter negative actions in synthesizing medical images.

Focusing specifically on Chest X-ray (CXR) generation, this paper addresses
three key challenges in generating report-conditioned CXRs tackling each with
specific feedback to achieve our final goal. (i) Posture Alignment Feedback: We
ensure accurate posture alignment through a specialized network, addressing po-
tential misalignments that could impair disease detection and diagnostics, such
as missing crucial areas (i.e., costophrenic angle). (ii) Diagnostic Condition Feed-
back: To enhance diagnostic accuracy in generated CXRs, we use feedback from
a state-of-the-art pretrained CXR lesion classifier [4] which guides the model to
generate more precise pathologic features. (iii) Multimodal Consistency Feed-
back: To ensure that CXRs generated from reports are semantically in agree-
ment with the reports, we provide feedback using large-scale representations [29]
trained on CXR-report pairs. This feedback guides our CXR generation model
to overcome disagreement between generated CXRs and reports.
Contributions. (1) Our study pioneers in applying RL to text-conditioned
medical image synthesis, particularly in CXRs, focusing on detail refinement
and input condition control for clinical accuracy. (2) We advance report-to-
CXR generation with a RLCF-based rewarding mechanism, emphasizing pos-
ture alignment, pathology accuracy, and consistency between input reports and
generated CXRs. (3) We jointly optimize the image generator and ACE via
reward feedback models, ensuring image-text alignment and medical accuracy
across varied reports, setting a new benchmark in a report-to-CXR generation.

2 Methods

In our study, we integrate policy gradient RL with diffusion models to enhance
the denoising process. We first describe the preliminaries and detail our frame-
work (Fig. 1) guided by a carefully designed multi-reward system (Fig. 2).

2.1 Preliminaries

Conditional Diffusion Probabilistic Models. Conditional Diffusion Prob-
abilistic Models (Conditional DPMs) [26] improve upon DPMs [9, 28] by inte-
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Fig. 2. A detailed illustration of our reward feedback models. We incorporate three dif-
ferent feedbacks for report-to-CXR generation model to generate goal-oriented CXRs.‡

grating conditions like text prompts into the reverse diffusion process, guiding
the synthesis towards high diversity and adherence to specified features. These
models train on a conditional log-likelihood to adjust outputs closely to these
conditions, enhancing diversity and targeted representation capability.
RL-based Diffusion Model Fine-tuning. The RL paradigm interprets the
diffusion denoising process as a series of actions aiming to maximize a reward
function that evaluates the adherence of generated images to a given prompt [2].
The sequential decision-making (denoising process) is formulated by an objective
function that targets the cumulative reward across the diffusion trajectory. Given
the context of RL-based fine-tuning of conditional DPMs, the objective function
Jθ is defined as Jθ = Ep(y)Epθ(x|y) [r(x,y)], where p(y) is the distribution of the
text condition y, pθ(x|y) is the distribution produced by the pretrained DPM
conditioned on text y, and r(x,y) is the reward for image x given text condition
y. As in DPOK [6], the policy gradient of Jθ w.r.t. the parameters θ is

∇θJθ = E
[
r(x,y)

∑T

t=1
∇θ log pθ(xt−1|xt,y, t)

]
, (1)

where T is the total number of time steps in the diffusion trajectory, xt is
the state of the image at time step t, and the gradient ∇θ is taken w.r.t. the
model parameters θ. By applying policy gradients, DPMs iteratively fine-tune
their parameters, improving image quality and enabling the generation of images
with high fidelity, detail, and diversity.

2.2 Reinforcement Learning with Comparison Feedback

Unlike existing methods that rely on direct feedback [2, 6, 18], we employ Re-
inforcement Learning with Comparative Feedback (RLCF), contrasting model
performance with a static anchor model, as illustrated in Fig. 1 and Fig. 2.
Utilizing RLCF, our model adapts through positive feedback for outperforming,
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and negative for underperformance, compared to the frozen anchor. With given
reward feedback signals, we jointly optimize two learning aspects:

(I) Image Generator: The image generator (diffusion model) aims to create
the final CXR x through a series of denoising steps, conditioned by the text
prompt embeddings c extracted from CXR report y. We fine-tune the diffusion
layers in a RL manner, advancing their fidelity in medical imaging.

(II) Learnable Adaptive Condition Embeddings: Given the variability
in radiologist reporting styles, relying solely on a report itself for CXR genera-
tion presents significant challenges. For this reason, inspired by Lester et al. [20],
we combine original static prompt embeddings cp = τθ(y) ∈ RM×dτ with the
learnable adaptive condition embeddings (ACE), represented as cs ∈ RN×dτ . It
is achieved by concatenating them to form the input condition as c = [cs, cp] ∈
R(N+M)×dτ . Here, τθ symbolizes the parameterized frozen text encoder for con-
ditioning image generator, y is the input report, dτ is the embedding dimension,
N is a sequence length of cs and M denotes sequence length of cp. ACE and
cp jointly allow the image generator more flexible inputs via cross-attention, en-
abling a precise capture of diagnostic and posture alignment features in CXRs.

2.3 Goal-oriented Reward Feedback Models

Our reward system comprises three models with distinct objectives (Fig. 2).

(I) Posture Alignment Feedback. Generated CXRs often face scaling issues,
such as excessive zooming or rotation, obscuring essential details. To counter
these undesirable effects, we introduce a reward signal to align the CXR’s posture
with a canonical orientation to preserve essential parts. The posture alignment
model is trained using L2 loss between the real CXRs and canonical CXR, where
canonical CXR is created by averaging 500 random CXRs from the dataset, fol-
lowing Liu et al. [21]. The posture alignment model adjusts CXRs by predicting
parameters ψ = {sx, sy, tx, ty, Θ} for an affine transformation, including scal-
ing (sx, sy), translation (tx, ty), and rotation Θ. The posture alignment reward,
ralign(ψ), quantifies the magnitude of transformation obtained from the frozen
posture alignment model. Our ralign is calculated in independent parameter space
as ralign(ψ) = −{(max(|sx−1|, |sy−1|)+ |Θ|

2π +
√
t2x + t2y)}. It aligns CXRs to the

canonical pose, enhancing posture precision and visibility of essential regions.

(II) Diagnostic Condition Feedback. To accurately reflect generated CXRs
with referenced pathologies, we classify them using parsed report label, reward-
ing its accuracy. To keep away from negative actions, we integrate the RLCF,
comparing our model’s CXR x against anchor model’s CXR x̂, using their score
difference for reward. Our diagnostic condition feedback rdiag is defined by the
formula: rdiag(x, x̂) = {accuracy(G(x))− accuracy(G(x̂))}, where G represents a
state-of-the-art pretrained CXR lesion classifier network [4].
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(III) Multimodal Consistency Feedback. Finally, we enforce the generated
CXRs to better match their reports. We leverage a multimodal latent represen-
tation [29] pretrained with CXR-report pairs for semantic agreement assessment.
Specifically, we employ RLCF to compute the difference in similarity scores be-
tween generated CXR x by our model and the report y, and the generated CXR
x̂ by an anchor model and the same report. The reward feedback is defined
as rconsist(x, x̂,y) = {dcosine(Fvisual(x),Ftext(y))− dcosine(Fvisual(x̂),Ftext(y))},
where dcosine represents the cosine similarity and Fvisual and Ftext represent the
visual and text encoders, respectively, mapping feature embeddings from their
respective modal inputs to joint multimodal latent space [29].

2.4 Optimizing Policy Gradient

Integrating the introduced reward feedbacks, we update the policy gradient in a
RL manner, by expanding Eq. (1). Our final reward to maximize is r(x, x̂,y, ψ) =
λalignralign(ψ)+λdiagrdiag(x, x̂)+λconsistrconsist(x, x̂,y), where λalign, λdiag, and
λconsist are hyperparameters. With given rewards, for B images in mini-batches
and T total diffusion denoising steps, we update the gradient as follows:

∇Jθ =
1

B

B∑
i=1

T∑
t=1

(r(x(i), x̂(i),y(i), ψ(i)))×∇θ log pθ(x
(i)
t−1|x

(i)
t , c(i), t). (2)
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Table 1. Evaluation of generated CXRs from multiple feedback perspectives. The table
compares the performance of various methods using three evaluation metrics.

Method (a) Posture Alignment (b) Classification (c) Semantic Consistency
ralign(ψ) (↑) AUROC (↑) CXR-CLIP Distance (↑)

RoentGen [3] -0.363 0.65 0.285
LLM-CXR [19] -0.327 0.78 0.201

CXRL (Ours) -0.246 0.81 0.343

w/o ACE -0.354 0.66 0.321
w/o RLCF (direct feedback) -0.319 0.71 0.301

3 Experiments

Datasets. We utilize PA and AP views from the MIMIC-CXR-JPG dataset [13],
while limiting report impressions to 74 tokens or less. We randomly sample 5,000
pairs from the official train split for training. For testing, similarly to the training
set, we utilize PA views from the test split, resulting in 1,000 pairs.
Implementation Details. CXRL fine-tunes with LoRA layers [10] on RoentGen-
initialized Stable Diffusion [3, 26], whereas the anchor model uses static Roent-
Gen. We train a posture alignment model with the MIMIC-CXR-JPG dataset [13]
using ResNet-18 [8]. A DenseNet-121 [11] CXR classifier [4] provides diagnostic
feedback. Ftext and Fvision utilize CXR-CLIP [29], with BioClinicalBERT [1]
and ResNet50 [8] serving as the backbone, respectively. DDPO algorithm [2]
guides policy gradient optimization, with 81 CXRs per batch, learning rate of
3e-4. λalign, λdiag, and λconsist are at 1, 10, and 10, with N = 3 and M ≤ 74.

3.1 Evaluation Results

Qualitative Analysis. In Fig. 3, we qualitatively compare our method to pre-
vious models [3, 19]. (1) Disagreement against input report or artifacts
(red circle): Our CXRL exhibits superior agreement between CXR and re-
port compared to the baselines, especially in their capability to avoid generating
unmentioned objects. For instance, in Fig. 3(a), while RoentGen deviates from
the report content by generating a pacemaker, CXRL maintains semantic con-
sistency by not doing so. Furthermore, in case Fig. 3(b), RoentGen generates
sternal wires (red circle) that are not mentioned in the report, whereas CXRL
does not. In terms of diagnosing specific conditions, CXRL shows a high level of
agreement. For example, in case Fig. 3(c), while LLM-CXR and RoentGen ei-
ther fail to identify or incorrectly generate hilar enlargement (blue colored text)
with artifacts, CXRL accurately represents them (blue arrow). (2) Misaligned
posture structures or missing crucial areas (yellow box): While others
occasionally miss details, our CXRL consistently shows the thoracic anatomy
comprehensively, including lung apices and costophrenic angles. In contrast,
RoentGen often loses critical areas due to inadequate posture alignment.
Quantitative Evaluation on CXR Specific Quality. Table 1 shows the
evaluation of our generated CXR across three metrics, reflecting the rewards
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Table 2. Comparative analysis of generated CXR quality: (a) compares established
models using FID and MS-SSIM metrics; (b) evaluates the impact of reward compo-
nents on FID scores.

(a) Quality Assessment
Model FID (↓) MS-SSIM (↓)
RoentGen [3] 2.58 0.197
LLM-CXR [19] 4.01 0.275
CXRL (Ours) 1.51 0.147
w/o ACE 1.79 0.192
w/o RLCF 1.58 0.188

(b) Ablation: Reward Feedback Models
Exp.# Reward FID (↓)

- Anchor Model [3] 2.58
1 + ralign 1.89
2 + rdiag 1.64
3 + rconsist 1.92

4 ralign + rdiag + rconsist 1.51

we targeted, which are key qualities of CXR. (a) The ralign measures posture
alignment, where values closer to 0 indicate a better fit. (b) The AUROC score
assesses diagnostic accuracy, and (c) the semantic consistency score evaluates
the alignment between CXR and the report. Table 1 confirms our rewards are
enhancing report-to-CXR generation model towards the goal-oriented result.
Quantitative Evaluation on Image Quality. Table 2a details the fidelity
of our generated CXRs, using the FID and MS-SSIM metrics for benchmarking
against baselines. Employing a CXR-specific DenseNet-121 [4] for FID, CXRL
outperforms baseline models [3, 19], showcasing superior image realism. Our MS-
SSIM scores, indicative of structural accuracy, also prove competitive, affirming
our model’s performance in generating authentic CXR textures.
Medical Expert Assessment. In pursuit of medical expert feedback, we as-
sessed 20 generated CXRs with five radiology experts. For impartiality, our
CXRL was fairly compared with baselines [19, 3] on the same hardware/software
configuration, and the generated CXRs were rated against reports on a 1 to 5
scale. Average scores were: RoentGen 3.4, LLM-CXR 2.4, and CXRL at 4.1,
showing superior CXR-report alignment and realism of our generated CXRs.

3.2 Ablation Study

Effect of ACE and RLCF. We validate the effectiveness of ACE (Adaptive
Condition Embeddings) and RLCF (comparative reward feedback) by excluding
the corresponding factor from fully combined CXRL. Table 1 presents a compar-
ison of key CXR quality metrics in our CXRL framework with and without the
integration of ACE and RLCF. While removing either ACE or RLCF improves
performance over the anchor model [3], ours with both ACE and RLCF achieves
the best overall performance. Similar aspects are shown in terms of image quality
assessment (Table 2(a)). In particular, w/o RLCF, which uses direct feedback
optimization with ACE, seems to improve CXR quality compared to the anchor
by providing flexible input conditions. This experiment demonstrates that both
ACE and RLCF are essential contributions of our model, in both domain-specific
quality and image quality aspects (See Fig. 3 for qualitative result).
Effect of Reward Models. In Table 2(b), we detail how each reward signal
influences model performance by examining FID scores. Individual rewards en-
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hance CXR quality (Exp. #1 to #3) beyond anchor levels which we aim to
surpass. Combining all rewards (Exp. #4) synergistically lowers the FID, show-
ing that multiple feedback signals crucially enhance CXR synthesis by capturing
broader features for high-fidelity CXRs (See supplement for qualitative result).

4 Conclusion and Discussion

In this study, we present CXRL for report-to-CXR generation using RLCF,
which significantly enhances medical image synthesis through a policy gradient
RL and an advanced adaptable reward feedback system. Our exhaustive exper-
iments demonstrate our framework’s state-of-the-art performance in generating
CXRs. The proposed adaptable reward framework not only excels in CXR gener-
ation but may also pioneer a wide spectrum of applications in various domains of
medical image synthesis, offering enhanced diagnostics, contributing to medical
education and research, and ensuring ethical access to medical imaging data.
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