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Abstract. To make medical datasets accessible without sharing sensi-
tive patient information, we introduce a novel end-to-end approach for
generative de-identification of dynamic medical imaging data. Until now,
generative methods have faced constraints in terms of fidelity, spatio-
temporal coherence, and the length of generation, failing to capture the
complete details of dataset distributions. We present a model designed
to produce high-fidelity, long and complete data samples with near-real-
time efficiency and explore our approach on a challenging task: gener-
ating echocardiogram videos. We develop our generation method based
on diffusion models and introduce a protocol for medical video dataset
anonymization. As an exemplar, we present EchoNet-Synthetic, a fully
synthetic, privacy-compliant echocardiogram dataset with paired ejec-
tion fraction labels. As part of our de-identification protocol, we evaluate
the quality of the generated dataset and propose to use clinical down-
stream tasks as a measurement on top of widely used but potentially
biased image quality metrics. Experimental outcomes demonstrate that
EchoNet-Synthetic achieves comparable dataset fidelity to the actual
dataset, effectively supporting the ejection fraction regression task. Code,
weights and dataset are available at https://github.com/HReynaud/EchoNet-
Synthetic.
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1 Introduction

Medical datasets play a crucial role for learning-based medical image analysis [21,
27] and form the basis for a potential future medical foundation model [4]. How-
ever, the confidential nature of medical data, coupled with concerns over privacy
and extensive individual patient-consent requirements, often restricts dataset
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releases. To address these challenges, we propose a new protocol for generative
medical dataset de-identification. In our protocol, we first train a generative
model, e.g., diffusion models, to learn the data distribution from a real train-
ing set. Then, we sample our generative model to generate a synthetic dataset,
with the same properties as the real training set, e.g., diversity, quantity, pop-
ulation statistics, etc. This synthetic dataset is then filtered to preserve patient
privacy and to safeguard against model memorization. To verify the quality of
this privacy-preserving synthetic data, we train a downstream model (regres-
sion, classification, segmentation, ...) on the generated data, and evaluate it on
a held out set of real data. We compare the model’s performance against the
same downstream model trained on the real training data. If their performance
difference is within an acceptable range, it proves that the synthetic dataset is a
valid substitute to the real training dataset, and can be shared as such without
data privacy constraints.
Contributions: (1) We introduce the first Latent Video Diffusion Model
(LVDM) capable of generating high-fidelity, long echocardiogram videos at near
real-time speeds. (2) We propose a comprehensive protocol for generating useful
medical datasets. This protocol emphasizes the importance of dataset quality,
validated through the training of downstream models (e.g., ejection fraction re-
gression) and ensures that synthetic datasets can effectively support medical
imaging research and clinical translation. (3) We release EchoNet-Synthetic, a
pioneering fully synthetic echocardiography dataset that maintains the quality
and diversity required for effective downstream model training, while protecting
patient privacy. Models trained on EchoNet-Synthetic exhibit performance met-
rics comparable to those trained on real datasets, thereby validating the efficacy
of our dataset generation protocol.
Related Works: Video generation is an important research area within com-
puter vision. Recently, several works started studying diffusion models for video
generation [1, 3, 10, 12, 14, 15, 17, 19, 20, 24, 30, 34–36, 39]. These diffusion-based
video generation methods can achieve outstanding modelling capabilities, but
they suffer from excessive computational requirements. To make them more
tractable, concurrent works explore Latent Diffusion Models (LDMs) for image
generation [26] and for video generation [3, 11, 37, 39]. VideoLDM [3] extends
LDMs to high-resolution video generation by turning pre-trained image LDMs
into video generators by inserting temporal layers. Latent Video Diffusion Mod-
els (LVDM) [11] proposes a hierarchical diffusion model operating in the video
latent space, allowing long video generation through a second model.

In the field of ultrasound generation, some works focus on physics-based sim-
ulators [16, 29] while others use Generative Adversarial Network (GAN)-based
methods for individual images. These works condition their models on Magnetic
Resonance Imaging (MRI), Computed Tomography (CT) [31, 33] or simulated [8,
32] images. Other works focus on ultrasound video generation. [18] presents a
motion-transfer-based method for pelvic ultrasound videos, while [25] introduces
a causal model for echocardiogram video generation. [24] introduces a diffusion
model-based video generation method for echocardiogram synthesis, which how-
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Fig. 1. Our inference video generation pipeline, consisting of a latent image diffusion
model with a privacy filter, a latent video diffusion model with video stitching and a
VAE decoder. All dimensions are given in (time ×) channels × height × width. † In
the video stitching method (yellow block), the first half of zt−1,0 is not discarded.

ever requires extensive sampling times. In this work, we build upon LDMs for
fast and temporally-consistent echocardiogram generation.

Privacy issues have recently gained a lot of attention due to diffusion mod-
els’ ability of to memorize training samples [5]. Current approaches focus on
two aspects, privatizing the generative model [7] and filtering out the generated
samples that raise privacy concerns [6, 22]. In this work, we focus on the second
approach to remove samples that can be linked back to the training set.

2 Method

The goal of our method is to generate videos suitable to train downstream models
while preserving patient privacy and allowing unlimited video duration. In this
section, we present our de-identification protocol, consisting of (1) video genera-
tion, (2) privacy filtering, (3) video stitching and (4) evaluation on a downstream
task. Figure 1 summarizes our video generation pipeline.
Video Generation: In this work, we implement an LDM pipeline for video
generation. To do so, we train three models, a Variational Auto-Encoder (VAE),
a Latent Image Diffusion Model (LIDM) and a Latent Video Diffusion Model
(LVDM), independently.

We start by training a VAE on an image reconstruction task. The VAE is
made of four downsampling blocks, based on attention and convolutional lay-
ers. Given an input image I ∈ RC×H×W , the variational autoencoder (VAE)
encodes it to produce two 3D latent tensors: a mean µ and a standard deviation
σ, such that {µ, σ} ∈ R4×H/8×W/8. These latent tensors are used to define an
n-dimensional Gaussian distribution, which is sampled to produce latent rep-
resentations of the image. From this latent representation, the VAE decoder
reconstructs the input image. The VAE is trained by using a combination of
MSE, LPIPS [38] and GAN [9] loss, and a KL-divergence loss which constrains
the latent space to be Gaussian distributed. After the VAE is trained, we encode
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the datasets into the VAE latent space, and train the diffusion models on these
latent representations.

The LIDM and LVDM are trained as discrete-time Denoising Diffusion Prob-
abilistic Models (DDPMs) [13] with a v-prediction [28] objective. The noising
process of the DDPM is defined as a Markov chain, where

p(z1:T |z0) =
T∏

t=1

p(zt|zt−1). (1)

The noise at each step is Gaussian, such that p(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI),

and βt specifies the noise variance. Here, zt is the noisy latent and T is the total
number of diffusion steps. For the denoising process, a neural network is trained
to estimate the velocity v, such that v = αtϵ− σtz, and updates z through

zt−1 = αtzt − σtvθ(zt), (2)

with αt and σt as time-dependent coefficients, and vθ as the v-prediction model.
The difference between the LIDM and LVDM resides in their backbone neural

networks and their training strategy. The LIDM is implemented as an uncondi-
tional UNet with residual downsampling blocks containing convolutional layers
and self-attention layers. We set the number of residual blocks to four, with
channel sizes 128, 256, 256, 512. The LIDM is trained to generate latent images
by minimizing an MSE loss over its outputs and the VAE pre-encoded images.
The LVDM consists of a Spatio-Temporal UNet [2], with four residual blocks
and channel sizes 128, 256, 256, 512. The residual blocks contain convolutional
layers and cross-attention layers, both with space-time separation. To train the
LVDM we use an MSE loss, and condition the model on an encoded real heart
image and a given Left Ventricular Ejection Fraction (LVEF) score.

During inference, we combine the three models into a video generation pipeline,
as shown in Figure 1. We start by sampling Gaussian noise, and use the LIDM
to progressively generate a random latent heart. Then, this latent heart, a ran-
domly sampled LVEF score and some Gaussian noise are passed to the LVDM.
The LVDM produces a latent video of the latent heart, where the motion of the
heart is conditioned by the given LVEF. Finally, we use the VAE-decoder to
decode the latent video frames into a pixel-space echocardiogram.
Video Stitching: Generating long videos with diffusion models remains a chal-
lenging task, even in a latent space, because of the training computational cost.
Naively extending the number of video frames during inference does not yield
realistic temporal consistency. This is because the attention layers in the back-
bone model cannot handle more than the time window it was trained on. To
circumvent this limitation and allow the generation of longer videos during in-
ference, we split and denoise a long noisy latent video into overlapping pieces,
and then stitch them back together (see Figure 1). As these overlapping pieces
are aware of the content of their predecessor, our method ensures seamless tem-
poral continuity in long videos. Formally, we start from a noisy latent video
Zt ∈ Rlv×c×h×w, where lv is the video length (e.g., 128). The LVDM vθ is
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trained on videos with length lm (e.g., 64), and lv > lm. We define an overlapping
factor o = lm

2 and split the Zt tensor into k overlapping chunks, k = lv−lm
o + 1.

This produces zt,i = Zt[i · (lm − o) : i · (lm − o) + lm],∀i ∈ {0, 1, . . . , k − 1}.
Then, we denoise these overlapping noisy latent videos with Equation (2), i.e.,
zt−1,i = αt · zt,i − σt · vθ(zt,i). Finally, to reconstruct Zt−1 from all zt−1,i, we
discard the overlaps over the time axis, i.e., for ∀i > 0, zt−1,i = zt−1,i[o : lm],
and then, we concatenate all updated zt−1,i over the time axis.
Privacy filtering: Since the LVDM only animates the heart images it is given,
ensuring that those images are privacy compliant is enough to guarantee that
the corresponding generated videos are also privacy compliant. Thus, we apply
the privacy filter on the latents generated by the LIDM. Specifically, we train a
re-identification model [22] on the encoded real training set. The re-identification
model is trained with a contrastive loss. We set the positive pairs as different
frames from the same video and the negative pairs as two frames from different
videos. The penultimate layer of the re-identification model is used to compute
the distance between two samples. Following [6], we use the Pearson correlation
score to measure that distance. During inference, we use the first frame of each
video to compute distances. We calculate the distance between all real training
samples and all real validation samples. From this distribution of distances, we
find the threshold τ , where 95% of the distances are above τ .Then, we compute
the distances between all synthetic and all real training samples. For each syn-
thetic sample, if the shortest distance to a real samples is under τ , we consider
the synthetic sample to be ‘memorized’ and exclude it.
Evaluation on downstream tasks: Current generated medical datasets are
usually evaluated with standard generative metrics such as Fréchet Inception
Distance (FID), Fréchet Video Distance (FVD) and Inception Score (IS). How-
ever, these metrics do not directly correlate with performance on downstream
tasks such as classification, regression, or segmentation. To address this, follow-
ing our de-identification protocol, we propose to generate synthetic datasets and
assess them on established downstream benchmarks to confirm their efficacy.
Specifically, we first use our privacy-preserving video generation pipeline to gen-
erate a synthetic echocardiogram dataset. Then, we compare the performance of
an LVEF regression model trained on real data, against the same model trained
on our generated dataset. After training, both models are evaluated on the same
real test set to ensure that the surrogate dataset’s distribution aligns with the
real data, thereby validating its quality and diversity.

3 Experiments

Data: To facilitate reproducibility, we use the publicly available echocardio-
gram datasets, EchoNet-Dynamic (Dyn) [21] and the EchoNet-Pediatric (Ped)
[23], as real datasets. Every echocardiogram in the real datasets has a manually
labelled LVEF. Dyn contains exclusively Apical 4 Chamber (A4C) views, split
into training, validation and test sets. Ped contains A4C and Parasternal Short
Axis (PSAX) views, with each view split into 10 folds. To match the datasets
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Table 1. Performance of the VAE. The Ped datasets do not have enough videos with
more than 128 frames to enable FVD128 computation.

Reconstruction Metrics Generative Metrics
MSE↓ MAE↓ SSIM↑ PSNR(dB)↑ LPIPS↓ FID↓ FVD16↓ FVD128↓ IS↑

Dyn 3e-3±8e-4 0.03±5e-3 0.78±0.05 24.9±1.08 0.08±0.01 16.9 87.4 69.2 2.33±0.13

Ped(A4C) 1e-3±7e-4 0.02±6e-3 0.86±0.05 28.9±1.95 0.07±0.02 6.9 21.8 - 2.90±0.09

Ped(PSAX) 2e-3±8e-4 0.02±6e-3 0.85±0.05 28.5±2.14 0.08±0.02 8.1 22.1 - 3.16±0.13

structure, we split Ped into Ped(A4C) and Ped(PSAX), and arbitrarily use the
first 8 folds for training, the 9th for validation and the 10th for test. All videos
have 3 channels, and we preprocess all videos to greyscale.
Model training: Our VAE is trained on all the frames from the training sets
of Dyn and Ped. We train the model from scratch for 5 days on 8×A100 (80GB),
with a total batch size of 256, and a learning rate of 5e−4. The VAE compresses
the frames from 3× 112× 112 to 4× 14× 14.

We train three independent LIDMs for Dyn, Ped(A4C) and Ped(PSAX), by
using the VAE-encoded train sets of each dataset. The backbone UNet operates
in a 4×16×16 configuration to allow three downsampling steps, so we use repli-
cation padding on the latents produced by the VAE to match those dimensions.
The three LIDMs are trained for 24h on a single A100 (80Gb), with a batch size
of 256, and a learning rate of 3e− 4.

We train a re-identification model for each real dataset on a single A100 with
batch size 128 for 1000 epochs. All other parameters are taken from [6].

The LVDM is trained on all the training sets of the three datasets. During
training, we sample a pair of latent video and LVEF from the training set. We
use a random frame from the latent video as the input heart. Conditioned on
this input heart and the paired LVEF, our LVDM is trained to reconstruct the
sampled video with a fixed length of 64 frames. We train the model for 2 days
with a learning rate of 1e− 4 on 8×A100 (80GB), with a total batch size of 128.
Model evaluation: We evaluate the VAE by computing the usual reconstruc-
tion metrics and generative metrics. The results in Table 1 show that our VAE
is capable of reconstructing echocardiogram frames with high fidelity, and thus
learns a meaningful latent space.

The LIDMs are evaluated using generative metrics FID and IS. We generate
100,000 samples with each LIDM, and apply our privacy filter to remove any
sample that has a close match in the corresponding real training set. Then, we
compute FID and IS on the unfiltered and filtered VAE-decoded latents. Table 2
shows that our privacy filter maintains the overall quality of the generated im-
ages. The ‘Rejected Samples’ shows that our LIDMs have limited memorization.

The privacy filtering models all reach Recall scores above 99%, ensuring a
low false-negative rate. Combined with our distance thresholding method, they
drastically reduce the risk of private data being present in the remaining samples.

To evaluate the LVDM, we use generative metrics FID, FVD16, FVD128 and
IS. We generate 2048 videos with 192 frames for Dyn and 128 frames for Ped.
We use two types of latent images to condition the video generation: (1) en-
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Table 2. Performance of the LIDM before and after applying privacy filtering.

Before Filtering After Filtering Rejected
FID↓ IS±std↑ FID↓ IS±std↑ Samples

Dyn 17.3 2.42±0.02 16.4 2.37±0.02 11.25%
Ped(A4C) 13.7 2.86±0.03 11.0 2.95±0.03 37.06%
Ped(PSAX) 16.8 3.05±0.03 14.5 3.03±0.02 27.45%
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Fig. 2. (a) Temporal consistency of our generated videos against previous works [24,
25] and the real data [21]. (b) Qualitative results of our generated videos against the
real data [21], animating the same heart with the same LVEF.

coded real images, and (2) LIDM-generated latent images. For the Dyn dataset,
Table 3 shows that our LVDM performs better when using encoded real images
than when using LIDM-generated latent images. Nevertheless, our LVDM us-
ing LIDM-generated latent images achieves competitive results compared to the
state-of-the-art echocardiogram generation method [24], in terms of image qual-
ity (FID) and video quality (FVD). Qualitatively, Figure 2 (b) shows that our
LVDM can generate videos which are indistinguishable from real ones. For the
Ped dataset, Table 3 shows that our LVDM achieves good overall performance.
Regarding video generation sampling time, our method (2.4s for 64 frames) is
two orders of magnitude faster than the state-of-the-art method [24] (279s for 64
frames). In addition, with the proposed video stitching strategy, we can gener-
ate infinitely long temporally-consistent videos. To demonstrate the scalability
of our method, we generate a 10-minute-video (19,200 frames at 32 fps) in 14
minutes on a A100 GPU.
EchoNet-Synthetic: We generate EchoNet-Synthetic (Syn) with our video
generation pipeline. Syn contains three sub-datasets, corresponding to the three
real datasets. Each sub-dataset has the same number of videos as its correspond-
ing real dataset, and the number of frames in each video is the average number of
frame in the corresponding real dataset. The visual quality of Syn is competitive
with previous state-of-the-art, and is indistinguishable from real data (Figure 2
(a) top row). In terms of temporal consistency, Syn outperforms all previous
works, and matches the real data (Figure 2 (a) bottom row).
Downstream Evaluation: We train LVEF regression models on the Syn
datasets. We use LVEF prediction metrics (R2, MAE, RMSE) from [21, 23] as
baselines, where the models have been trained on the real data. We report the
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Table 3. Performance of the LVDM when generating videos from encoded real hearts
(left) and LIDM-generated hearts (right). Sampling time for 64 frames, or 2s of video.

Real Hearts LIDM Generated Hearts Sampling
FID↓ FVD16 ↓ FVD128 ↓ IS±std↑ FID↓ FVD16 ↓ FVD128 ↓ IS±std↑ Time

EchoDiff.[24] 24.0 228 - 2.59±0.06 28.0 294.4 - 2.47±0.04 279s
Dyn 17.4 71.4 168.3 2.31±0.08 28.8 103.5 280.2 2.26±0.08 2.4s

Ped(A4C) 24.8 112.2 - 2.69±0.18 22.6 86.6 - 2.77±0.23 2.4s
Ped(PSAX) 33.0 126.9 - 2.49±0.09 27.9 85.1 - 2.86±0.18 2.4s

Table 4. Comparison for LVEF regression models performance. ‘Claimed’ and ‘Re-
produced’ are the claimed results in [21, 23] and our reproduced results, respectively.
‘VAE rec.’, ‘EchoDiff. [24]’ and ‘Ours’ are the results where the regression model is
trained on VAE-reconstructed data, generated data from [24] and our generated data,
respectively, and evaluated on the real data. The last row shows the regression model
trained and tested on our Syn datasets.

Dynamic [21] Ped (A4C) [23] Ped (PSAX) [23]
R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓

Claimed 0.81 4.05 5.32 0.70 4.15 5.70 0.74 3.80 5.14
Reproduced 0.81 3.98 5.29 0.68 4.19 5.71 0.71 3.79 5.14
VAE rec. 0.80 4.12 5.48 0.68 4.21 5.71 0.72 3.82 5.14

EchoDiff. [24] 0.55 6.02 8.21 - - - - - -
Ours 0.75 4.55 6.10 0.70 5.06 7.07 0.68 4.82 6.95

Syn Dynamic Syn Ped (A4C) Syn Ped (PSAX)

Ours (Syn) 0.93 1.67 2.24 0.94 1.24 1.90 0.96 0.94 1.51

results from these works (‘Claimed’ in Table 4) and reproduce them exactly with
the same models and training setup (‘Reproduced’ in Table 4). To test the infor-
mation loss caused by VAE encoding/decoding, we train the regression models
on the VAE-reconstructed real data (‘VAE rec.’ in Table 4). We also train the
regression model on synthetic data generated with EchoDiffusion [24], the most
recent ultrasound synthesis diffusion model (‘EchoDiff. [24]’ in Table 4). The
results on our Syn datasets are shown in row ‘Ours’ in Table 4. From Table 4,
we observe that the regression models trained on Syn perform notably better
than the state-of-the-art (i.e., ‘EchoDiff. [24]’ vs. ‘Ours’). The models trained
on Syn overall perform well on the real data, although they are not equivalent
to the models trained directly on the real data. We attribute this performance
difference to residual domain shift, given the high performance of the regression
model trained and tested on the Syn dataset (‘Ours (Syn)’ in Table 4).

4 Conclusion

In this paper, we introduced a new end-to-end protocol for surrogate medical
dataset generation, showcasing its adaptability through the provision of open-
source code and a synthetic dataset that facilitates replication and further in-
vestigation by the research community. Our work not only highlights a novel



EchoNet-Synthetic 9

approach to generating extended video sequences beyond the initial training
scope of the video diffusion model but also integrates a cutting-edge privacy
preservation technique to ensure the synthetic datasets can be shared safely.
We believe this to be a step forward in leveraging synthetic datasets, offering
a method that maintains dataset attributes in terms of size, quality and diver-
sity. While we acknowledge the complexity surrounding intellectual property, it
is primarily a political challenge, and our focus here remains on the technical
advancements that should mitigate the legal constraints around patient data
safety. We are committed to employing the here presented protocol to release
synthetic surrogates of private datasets in the future.
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