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Abstract. Esophageal fistula (EF) is a critical and life-threatening com-
plication following radiotherapy treatment for esophageal cancer (EC).
Albeit tabular clinical data contains other clinically valuable information,
it is inherently different from CT images and the heterogeneity among
them may impede the effective fusion of multi-modal data and thus
degrade the performance of deep learning methods. However, current
methodologies do not explicitly address this limitation. To tackle this
gap, we present an adaptive multi-information dual-layer cross-attention
(MDC) model using both CT images and tabular clinical data for early-
stage EF detection before radiotherapy. Our MDC model comprises a
clinical data encoder, an adaptive 3D Trans-CNN image encoder, and a
dual-layer cross-attention (DualCrossAtt) module. The Image Encoder
utilizes both CNN and transformer to extract multi-level local and global
features, followed by global depth-wise convolution to remove the re-
dundancy from these features for robust adaptive fusion. To mitigate
the heterogeneity among multi-modal features and enhance fusion ef-
fectiveness, our DualCrossAtt applies the first layer of a cross-attention
mechanism to perform alignment between the features of clinical data
and images, generating commonly attended features to the second-layer
cross-attention that models the global relationship among multi-modal
features for prediction. Furthermore, we introduce a contrastive learning-
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enhanced hybrid loss function to further boost performance. Compara-
tive evaluations against eight state-of-the-art multi-modality predictive
models demonstrate the superiority of our method in EF prediction, with
potential to assist personalized stratification and precision EC treatment
planning.

Keywords: Multi-modal Data Fusion · Attention Networks · Predictive
Model

1 Introduction

Esophageal cancer (EC) was ranked sixth in global cancer mortality, and the
five-year survival rate is between 15% and 20% [10]. The main treatments of EC
involve chemotherapy and radiation therapy [16, 1, 15], and only few patients
have the potential for complete recovery [16]. However, these therapeutic in-
terventions may inadvertently cause a life-threatening complication known as
Esophageal Fistula (EF) [21]. Patients diagnosed with EF face a grim challenge,
for which the survival time is typically limited to a few months. Therefore, the
early identification of EF enables timely intervention and treatment, probably
offering patients improved treatment outcomes and enhanced quality of life. In
EC treatment planning, Computed Tomography (CT) images and other types of
clinical data are often used to facilitate esophageal tumor detection and patient
examination. In general, the clinical data includes complementary information on
therapy and patient profiles [17]. However, the combination of both images and
clinical data substantially augments its complexity and introduces challenges to
EF identification. Recently, deep learning have been successfully applied to fields
including computer vision and natural language processing [13], with superiority
to discover underlying correlations among complex data and build reliable map-
pings between data and tasks. Hence, EF prognosis using deep learning methods
have demonstrated paramount significance and urgency.

Recently, multi-modal data has been exploited by deep learning methods
to various disease-related analyses. For instance, Chauhan et al. [2] employed a
joint function with separate encoders and classifiers to assess pulmonary oedema
from chest radiographs and radiology reports. Li et al. proposed a multi-modal
network combining supervised and unsupervised learning for cancer survival pre-
diction [12] using CT images and clinical data. Meanwhile, Yap et al. exploited
a late fusion technique for integration of macroscopic images, dermatoscopic im-
ages and histopathological diagnosis data to classify skin lesion [20]. Vale-Silva
et al. proposed a multi-modal deep-learning model aggregating imaging, clinical
and molecular data for long-term cancer survival prediction [18]. With the pop-
ularity of attention networks [19] a few attention-based integration models have
been developed. For instance, with CT images and clinical data, a cross-modal
self-attention model [9] was proposed for EC prediction and a graph attention
model [5] was designed for lymph node metastasis prediction. Likewise, Fu et al.
[8] proposed a multi-modal graph-based network for breast cancer survival pre-
diction using imaging mass cytometry and patient variables. The multi-modal
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transformer model proposed by Zheng et al. predicted the survival rate of na-
sopharyngeal carcinoma patients [22] from CT images, segmentation map and
tabular clinical data. Similarly, [23, 24] leveraged multi-modal transformer net-
works using clinical text data and a mix of imaging data for the visual acuity
prediction of cataract surgery and pulmonary disease diagnosis. Due to the het-
erogeneous nature of data from different modalities, the existing heterogeneity
may hinder the learning capacity of the model and thus affect the performance
of downstream tasks. However, existing approaches do not explicitly relieve the
heterogeneity among multi-modal data.

To address above-mentioned issues, we propose an adaptive multi-information
dual-layer cross-attention (MDC) model for EF diagnosis. Specifically, MDC
comprises three major components. First, a clinical data encoder is adopted to
extract features from tabular clinical data. Second, an adaptive 3D Trans-CNN
image encoder is designed to extract latent image features. The image encoder
utilizes both CNN and transformer to extract multi-level local and global fea-
tures. To facilitate the mitigation of heterogeneity, the image encoder further
introduces a global depth-wise adaptive fusion module that aims to filter out
redundant information within extracted local and global features by identifying
the importance of these features and then adaptively fusing them. This is because
image is high-dimensional data itself, and both the locally and globally extracted
features further introduce more redundant and noisy information. Third, we de-
sign a novel dual-layer cross-attention (DualCrossAtt) module to mitigate the
cross-modal heterogeneity and fuse the multi-modal features. DualCrossAtt con-
sists of the first layer of a cross-attention mechanism which utilizes clinical data
feature as query so as to find its attended areas within image features. By doing
that, we are able to align image features and clinical data features, identifying
attended regions shared by both features and thus relieving the heterogeneity
among them. Concatenated with image features, the identified attended features
are then passed to the second layer of cross-attention mechanism to build global
relationship of multi-modal features for final detection. To more effectively train
the model, we devise the hybrid loss function combining a cross-entropy loss and
a contrastive loss. The cross-entropy loss is utilized for our classification task,
and the contrastive loss aims to render features from same class more similar
while increasing the dissimilarity of those from different classes.

Our contributions can be summarized as: (1) a multi-sourced information
strategy that includes features from different views of CT images and integrates
clinical data from another modality, thereby augmenting the performance of EF
prognosis. (2) an adaptive fusion strategy to generate more effective and unified
features of image modality by combining its local and global information. (3) a
new dual-layer attention mechanism aims to align the cross-modal features to
extract attended features across all modalities and meanwhile model the global
relationship among multi-modal features. (4) the hybrid loss with contrastive
learning further enhances our performance. Comprehensive validation against
eight state-of-the-art (SOTA) multi-modal predictive models and ablation study
demonstrated the effectiveness of our technical innovations and contributions.
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Our work is critical as early prediction of this radiation therapy caused EF
enables to develop more personalized treatment plans, thereby improving the
quality of life for patients with EC.

2 Material and Method

2.1 Dataset

The dataset includes 553 EC patients collected from Shandong Cancer Hospital
between 2014 and 2019. This study was approved by the ethical committee of
Shandong Cancer Hospital, China. There are 367 patients diagnosed with EF
after radiotherapy treatment, while the remaining 186 cases are the patients
without diagnosed EF. This dataset provides both clinical data and CT images.
We cropped the original CT scans into individual cubes of size 201 pixels × 201
pixels × 27 slides at the centre of the tumour, and these cubes were then re-
sized to 48 pixels × 48 pixels × 27 slides as the input of our model. The clinical
data has general information such as patients’ ID, age, gender, drinking, and
smoking history. It also contains medical treatment details, including radiation
dose types and volumes, history of radiotherapy and inhibitor therapy. In total,
there are 34 variables in clinical data, with 7 numerical variables and 27 cate-
gorical variables. One-hot embedding was then applied to categorical variables,
resulting in 71-dimensional categorical data. As a result, the input clinical data
has 78 dimensions including 7 numerical and 71-dimentional categorical data.
To prevent overfitting, we applied data augmentation to the training data by
shifting along different axes with [-5, 0, 5] pixels, generating 3142 samples with
1674 EF cases and 1468 non-EF ones.

2.2 MDC Esophageal Fistula Prognosis Method

The overall architecture of our MDC method is shown in Fig. 1. Briefly, the
clinical data encoder and the adaptive 3D Trans-CNN image encoder aim to
extract features from tabular clinical data and CT images, respectively. After
that, the DualCrossAtt module aligns the extracted multi-modal features to
relieve the heterogeneity across multi-modal data and also builds long range
dependencies among them. To further enhance accuracy, we present the hybrid
loss by integrating the cross-entropy loss with the contrastive learning.

Clinical Data Encoder and Adaptive 3D Trans-CNN Image Encoder.
The clinical data encoder takes tabular clinical data CϵRDc as inputs, where

Dc = 78 refers to the dimension of clinical data. Since the clinical data includes
numerical variables and categorical variables, we utilize two separate encoders
to process these two types of variables. Here, each encoder consists of a linear
layer, a batch normalisation layer and a SiLU activation function. To generate
clinical data features Fc, the features extracted from these two types of variables
are then expanded, duplicated and concatenated along channels.
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Fig. 1. Our method consists of the clinical data encoder, the adaptive 3D Trans-CNN
image encoder, the dual-layer cross-attention (DualCrossAtt) module and a hybrid
loss. The encoders aim to extract features of data from their corresponding modalities,
and the dual-layer cross-attention module aligns the extracted multi-modal features
and also builds the global relationship among multi-modal data. The hybrid loss with
contrastive learning further enhances the capacity of our model.

Compared to low-dimensional clinical data, the 3D CT images IϵRDI×H×W

contain much richer information. Here, DI , H, W are respectively the depth,
height and width of the image. We therefore propose the adaptive 3D Trans-
CNN image encoder, including a CNN encoder based on the U-Net [11] and
a Vision Transformer [6], to extract image features from multiple scales and
views. That is, the CNN encoder focuses on the local features IlϵR

C×DI×H×W

(C is the number of channels), whilst the transformer can capture global fea-
tures IgϵRC×DI×H×W . We then perform channel-wise concatenation on Il to Ig
generate FcatϵR

2×C×DI×H×W .
As Fcat is the feature fused from multi-views, which is likely to contain re-

dundant information, we introduce an adaptive fusion module into the 3D Trans-
CNN image encoder so that the encoder is able to extract more effective multi-
view features with less redundancy. To achieve that, the adaptive fusion module
involves a Global Depth-wise Convolution (GDWConv) [4] layer, a Linear layer
and Sigmoid activation function:

Fw1 = Sigmoid(Linear(GDWConv(Fcat))) (1)

In Eqn. 1, Fw1 represents the channel-wise weight of Fcat, for which the weight
indicates the importance of feature and its value range is between 0 and 1. It is
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also noteworthy that we exploit GDWConv rather than ordinary convolutions to
better utilize the features across different views in Fcat for weights calculation.
Next, we multiply Fcat by the weights Fw1 to identify more important features
and add back the results to Fcat:

F1 = Fcat + Fcat × Fw1 (2)

Dual-Layer Cross-Attention (DualCrossAtt) Module. The features of
the two modalities are inherently different, since they provide patient informa-
tion from different perspectives. We therefore propose the DualCrossAtt module
exploiting a first layer of cross-attention to mitigate the discrepancy among
multi-modal features and take a further step to model the global relationship of
multi-modal features with a second layer of cross-attention. Unlike a single at-
tention mechanism, our dual-layer cross-attention module strengthens both the
consistency and global dependency among multi-modal features. For the first
layer cross-attention, we use the clinical data feature QFC

as query, image fea-
tures KFI

, VFI
as key and value. By doing that, it performs alignment of clinical

data and images, allowing the clinical data to find its consistent information in
image features. As a result, the attended regions generated by the first layer
cross-attention are the important features shared by both modalities:

FC,I = Softmax(QT
FC

×KFI
)× V T

FI
+ FI (3)

where QFc
is obtained by applying the convolution operation to Fc. Similarly,

we utilize two convolutions upon FI to obtain KFI
and VFI

, respectively.
In Eqn. 3, the output FC,I of first layer cross-attention contains information

of image features and the attended features of both modalities. To better exploit
FC,I , we introduce the second layer cross-attention to strengthen the long-range
dependency among FC,I . Specifically, we apply three separate convolutions to
FC,I , obtaining the query QFC,I

, the key KFC,I
and the value VFC,I

.

F ′
C,I = Softmax(QT

FC,I
×KFC,I

)× V T
FC,I

+ FC,I (4)

Here, QFC,I
, KFC,I

and VFC,I
are from the same source FC,I . In essence,

the second layer cross-attention is the self-attention [19, 14]. The generated F ′
C,I

with strengthened global relationship is utilized for final prediction.

Hybrid Loss. Our hybrid loss involves a cross-entropy loss and a contrastive
loss as:

Lh = Lce + ωLcl (5)

where ω = 1 refers to the weight, Lce is the cross-entropy loss for the learning of
classification task. Besides, we add the contrastive loss Lcl that aims to enhance
the clustering degree of the features. This is primarily because different patients
tend to have varied image appearances, textures and clinical data values, even if
they are from the same group (e.g. patients with EF). As a result, the features
extracted from CT images and clinical data are also varied among these patients.
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To facilitate classification, we need to learn more unified feature representations
for each class, so that features from the same class are clustered together and
those from different classes are kept as far as possible. Inspired by current studies
of contrastive learning [3], we introduce the contrastive loss as:

Lcl = Σp
i=1((1− yi)

1

2

∥∥f(xi
1)− f(xi

2)
∥∥
2
+ yi

1

2
(max(0,m−

∥∥f(xi
1)− f(xi

2)
∥∥
2
))

(6)
where p represents the number of training pairs, yi is a binary label indicating
if the pair of features xi

1 and xi
2 is from the same class or not. Meanwhile, f()

is the fully-connected layer based projection head that reduces the dimension
of features for ease of contrastive learning, and ∥∥2 measures the l2 distance
between projected features. In addition, m > 0 is the margin that the measured
distance less than it will contribute to the contrastive loss.

3 Experiments, Results and Discussions

3.1 Implementation Details

We implemented our model in PyTorch framework and trained it using one
NVIDIA Corporation GV100 GPU. The Adam optimizer was adopted with
learning rate of 0.01. The batch size was set to 50, and the total number of
epochs was 250. We evaluated all experimental methods using the same 5-fold
cross validation in which each fold contains 4/5 and 1/5 of data as the training
and test sets, respectively. Out of the training set, 1/5 of data was utilized as
the validation set.

3.2 Comparison Methods and Evaluation Measures

We compare our method to eight state-of-the-art baselines, including the image
based method Lungnet [7], and multi-modality based methods – Chauhan [2],
Yap [20], MultiSurv [18], VisText [9], IRENE [23], MSA [24] and DMGN [8].
We performed evaluation in terms of Area Under the Curve (AUC), Balanced
Accuracy (BAC), F1 Score, and Sensitivity (SEN).

3.3 Comparison Results

As shown by results in Table 1, our proposed method outperforms the other
baselines with respect to all metrics.

It is noteworthy that AUC is a comprehensive metric that considers both
sensitivity and specificity. To better illustrate it, we also show the comparison of
ROC curves among our method and the other baselines in Fig. 2. It can be seen
that the ROC curve of our method with the AUC score of 75.1 is consistently
above the ROC curves of all the other baselines, gaining 6.4% improvement over
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Fig. 2. Mean ROC curves of 5-fold cross validation on all the 8 compared methods
with mean AUC values ± standard deviation (std) on the EF prognosis.

Table 1. Quantitative comparison of our method and 8 baselines on EF prognosis. We
utilize mean value ± standard deviation to show the variances in 5-fold cross validation.

Method AUC(%) BAC(%) F1(%) SEN(%)
Lungnet [7] 63.77±04.53 54.87±04.99 26.79±04.44 25.56±28.31

Chauhan [2] 68.78±06.02 64.63±05.16 53.94±04.74 54.31±09.91

Yap [20] 69.33±03.39 59.70±01.33 52.31±07.11 64.95±19.72

MultiSurv [18] 69.25±03.51 64.32±03.24 56.42±06.17 59.31±14.66

VisText [9] 70.09±06.72 64.73±05.81 58.01±05.34 55.86±12.30

IRENE [23] 56.82±04.67 53.43±04.74 46.82±05.45 58.75±13.73

MSA [24] 70.55±05.25 65.02±02.54 54.34±01.97 54.83±12.94

DMGN [8] 67.21±04.76 62.60±05.44 49.32±04.41 45.90±11.52

MDC 75.10±04.18 66.12±05.66 60.53±11.60 69.41±23.91

the second-best method MSA [24]. Other than that, we enhance the F1 score,
BAC, SEN by 4.3%, 1.7% and 6.9%, respectively.

We posit that the outperformance of our model is mainly attributed to the
utilised multi-information and DualCrossAtt module. That is, the multi-sourced
information, including local, global image features and the clinical data, integrat-
ing more comprehensive features and are clearly superior to those using fewer
information. For the multi-modal heterogeneity, unlike other methods that do
not explicitly address it, our DualCrossAtt module can relieve it by performing
the alignment such that extracting the attended features shared by both modal-
ities to achieve more effective prediction. Also, integrating with the contrastive
loss strengthens the clustering effects of the learned features and further enhance
the accuracy.
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3.4 Ablation Study Results

We investigate how adaptive fusion module, DualCrossAtt and contrastive loss
Lcl affect the performance of our model. We start with a baseline of our model
without all these components and then gradually add each component.

Table 2. Ablation study results of investigating the effect of key components in our
MDC model.

Adaptive Fusion DualCrossAttn
Lcl

Results
1st layer 2nd layer AUC(%) BAC(%) F1(%) SEN(%)

72.79±04.94 64.26±03.09 54.05±03.79 55.78±16.42

✓ 73.22±05.42 65.46±03.95 55.78±03.99 53.78±20.97

✓ ✓ 73.69±06.48 65.52±04.92 55.70±05.10 56.98±20.58

✓ ✓ ✓ 75.02±05.27 65.56±03.12 56.93±04.47 55.34±10.15

✓ ✓ ✓ ✓ 75.10±04.18 66.12±05.66 60.53±11.60 69.41±23.91

As shown in Table 2, adding adaptive fusion module enhances the perfor-
mance of the baseline model with respect to most metrics. This is due to its
ability to fuse more important features of image modality. In terms of AUC,
BAC and F1 score, we note that the improvement is not large by combining
only the second layer of DualCrossAtt to adaptive fusion module. This is pre-
sumably because without first layer attention for the alignment, the misaligned
multi-modal features affect the prediction accuracy. This point is best illustrated
when we integrate with the whole DualCrossAtt, for which the incorporation of
first layer attention substantially improves the accuracy, especially for the metric
of AUC. Lastly, our entire model achieves best results after adding contrastive
loss Lcl.

4 Conclusion

In this work, we propose MDC, a novel deep learning model designed for the
prediction of esophageal fistula in esophageal cancer patients, aiming to facili-
tate the development of more tailored treatment plans. MDC exploits clinical
data, CT images with CNN and Transformer to aggregate multi-sourced infor-
mation. Our model further introduces a dual-layer attention mechanism to align
multi-modal data and capture the global relationship, combining a hybrid loss
with contrastive learning to enhance the clustering effect of learned features. Ex-
perimental evaluations underscore the superiority of our approach over existing
state-of-the-art multimodality-based baselines.

Disclosure of Interests. Authors have no competing interests in the paper.
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