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Abstract. The recognition of glioma boundary is challenging as a dif-
fused growthing malignant tumor. Although fluorescence molecular imag-
ing, especially in the second near-infrared window (NIR-II, 1000-1700
nm), helps improve surgical outcomes, fast and precise recognition re-
mains in demand. Data-driven deep learning technology shows great
promise in providing objective, fast, and precise recognition for glioma
boundaries, but the lack of data poses challenges for designing effective
models. Automatic data augmentation can improve the representation
of small-scale datasets without requiring extensive prior information,
which is suitable for fluorescence-based glioma boundary recognition.
We propose Explore and Exploit Augment (EEA) based on multi-armed
bandit for image deformations, enabling dynamic policy adjustment dur-
ing training. Additionally, images captured in white light and the first
near-infrared window (NIR-I, 700-900 nm) are introduced to further en-
hance performance. Experiments demonstrate that EEA improves the
generalization of four types of models for glioma boundary recognition,
suggesting significant potential for aiding in medical image classification.
Code is available at https://github.com/ainieli/EEA.

Keywords: Glioma · NIR-II fluorescence imaging · Multi-modal imag-
ing · Image classification · Automatic data augmentation

1 Introduction

Glioma is a fatal primary brain tumor that threatens human health [1]. Micro-
surgery under white light (WL) is the primary treatment for glioma. However,
due to its diffuse nature, identifying the boundary of glioma is challenging for
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neurosurgeons [26]. Consequently, the recurrence rate of glioma is high, lead-
ing to poor prognosis [22]. Recognizing the boundary of glioma is crucial for
improving surgical outcomes and prognosis for glioma patients.

Fluorescence molecular imaging is a promising technology in both pre-clinic
and clinic [3,4,13], which can mark the glioma through fluorescent molecular
probes during surgery. It guides neurosurgeons to achieve complete resection and
further reduce the gliomas recurrence [13,21]. Indocyanine green (ICG) is a com-
monly used probe for the first near-infrared window (NIR-I, 700-900 nm) imaging
that reveals intricate biological structure and functional details of glioma that
are not easily discernible under white light WL [13]. Furthermore, the emission
spectrum of ICG also has a tail in the second near-infrared window (NIR-II,
1000-1700 nm), where fluorescence imaging offers higher contrast, deep tissue
penetration, and sharper boundaries compared to NIR-I imaging [3]. Therefore,
NIR-II imaging holds great promise for improving outcomes in glioma resection.

Although fluorescence molecular imaging shows advantages over traditional
WL imaging, precise resection is still difficult to achieve. In clinical practice, the
recognition of boundaries relies on the subjective experiments of surgeons, or
on time-costly intraoperative frozen section biopsies [10]. There lacks a fast and
objective diagnostic method for clearly recognizing glioma boundaries. Thanks
to the development of deep learning (DL) technology, this goal becomes possible
[20,27]. However, research on NIR-II imaging in clinical settings is still in its
nascent stages [2,11,21], resulting in limited prior knowledge of its application.
Additionally, the scarcity of NIR-II glioma boundary data presents challenges in
designing effective data-driven DL methods.

Data augmentation (DA) can reduce the negative impact of small-scale dataset
on training DL models by expanding the dataset [7,30], among which automatic
DA can automatically adjust its augmentation policy to suit the data [5,6,28,29].
Therefore, automatic DA is expected to improve the performance of DL models
for NIR-II imaging-based glioma boundary recognition, even without extensive
priors of NIR-II imaging in clinic. However, current automatic DA methods, such
as the widely adopted AutoAugment (AA) [5], are primarily studied on natural
images. Meanwhile, they either adopt complicated designs for implementation
[29] that set barriers to medical image analysis, or extra time-consuming search
process [5,6]. Although the searched policies can be transferred to new tasks,
the performance is usually decreased compared to searching from scratch [5].
Some automatic DA, like RandAugment (RA) [6], employ simpler implemen-
tations based on heuristics to reduce optimization costs, but this may sacrifice
flexibility and performance [28].

To strike a balance between easy implementation and performance gain, we
propose an intuitive automatic DA that can dynamically adjust the image de-
formations during training. We call it Explore and Exploit Augment (EEA).
The proposed EEA improves the performance of glioma boundary recognition
based on NIR-II fluorescence imaging. It is inspired by the exploration and ex-
ploitation in multi-armed bandit problem, which dynamically adjusts the image
deformations to achieve better generalization on the small-scale NIR-II dataset.
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In addition, we further introduce WL and NIR-I imaging of the same glioma
tissue to utilize the complementary information for better performance [27]. We
emphasize that the contribution of EEA is modeling deformation selection as
multi-armed bandit problem, providing new insights to DA for better glioma
boundary recognition. To the best of our knowledge, we are the first to study the
impact of DA on the diagnosis based on NIR-II imaging.

2 Method

2.1 Formalize the Automatic Data Augmentation

We decouple the proposed EEA into two parts: augmentation operators O for
controlling how to deform images, and magnitudes for controlling the extent of
the deformation. In addition, we refer to the previous work RA [6] and adopt the
operators from it as the basic candidate operator set O. We simultaneously aug-
ment the WL, NIR-I, and NIR-II images within one transformation. Note that
NIR-I and NIR-II images each have only one channel that represents fluorescence
intensity, which differs from WL images that have RGB channels. Therefore,
operators such as color and contrast, which require a conversion to grayscale
images during transformation, are removed from O because multi-modal images
do not have a grayscale representation. The remaining operators are used in the
following experiments.

Magnitude ranges of candidate operators are first normalized to range [0, 1],
with 0 indicating no augmentation and 1 indicating the maximum. Then, these
magnitudes are uniformly discretized at N levels. Note that operators without
magnitudes are always applied when sampled.

Furthermore, we introduce another parameter augmentation depth D that
allows the combination of different augmentation operators for the same image.
We choose the empirical value used in natural image augmentation [5,6] to re-
duce the number of learnable parameters. Note that identity, which keeps the
input unchanged ,is within in the candidate operator set, thus augmented im-
ages with fewer than D transformations applied are also included. In general,
the augmented image can be formalized as

I ′i = O
1,m1

i
i ◦ · · · ◦OD,mD

i
i (Ii), 1 ≤ i ≤ B, (1)

where Ii and I ′i are images before and after augmentation, B is the batch-
size of the image batch B, ◦ indicates sequentially applying the operators, and
Od,md

i (1 ≤ d ≤ D) is the sampled augmentation operator for the dth transfor-
mation Od with magnitude md for Ii. Therefore, data augmentation becomes a
problem of determining how to obtain Od

i and md
i .

2.2 Define the Multi-armed Bandit Problem in Data Augmentation

The multi-armed bandit is a classical problem in reinforcement learning (RL),
aiming to find a proper balance between exploring the unknown and exploiting
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Fig. 1. Pipeline of the proposed Explore and Exploit
Augment (EEA) for glioma boundary recognition with
white light, NIR-I, and NIR-II imaging.
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Fig. 2. Cases of multi-
modal images for glioma
boundary recognition.

the current best option. We formulate the selection of md
i in DA as the selection

of arms in a multi-armed bandit, where each level can be treated as an arm. With
different selections of magnitudes, the augmented image is expected to exhibit
different deformations, potentially improving the generalization of DL models.
Note that previous works have demonstrated the sensitivity of automatic DA to
the selection of Od [6], which also increases the complexity of these methods.
However, a random selection baseline can also achieve satisfactory performance
with limited performance decrement [6]. Therefore, for simplicity, the selection
of operators Od in our work is based on random selection. The optimization
objective in EEA then becomes the selection of md

i . This reduction in parameters
for optimization also eases the burden of EEA, making it more intuitive for
understanding and implement.

2.3 Choose Image Deformations

SARSA [19] is a widely applied optimization strategy in RL, which involves
maintaining a Q-table for selecting the optimal action in a specific state and
updating the policy based on action taken. Inspired by this design, and consid-
ering that the multi-armed bandit is a one-state problem, we slightly modify the
Q-table to a pseudo version (pQ-table) used for selecting the optimal md values.
Therefore, the pQ-table has a size of D ×N .

To update the pQ-table, we measure the reward ri (1 ≤ i ≤ B) on one image
batch B. The final reward r has the same size as pQ-table, with the value at
a specific position (d,md) denoted as rd,m

d

. For each image I ′i, we sample D

transformations Od,md

i (1 ≤ d ≤ D) and accumulate the reward of taking Od,md

i

in rd,m
d

. Therefore, the average rd,m
d

can be calculated on B. For position (d,md)
where the magnitude md is not sampled at augmentation depth d in the batch,
the reward is assigned 0.
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Algorithm 1: Training with Explore and Exploit Augment (EEA)
Input: Dtaining: Training dataset; B1, B2: Glioma image batch; Ii, Ij : Single

image with WL/NIR-I/NIR-II modalities; M: DL model; Od:
Augmentation operator for the dth transformation; O: Candidate
operator set; D: Number of transformations for one image; N : Number
of magnitude levels; md: Magnitude of the dth transformation; Qd:
Value of pQ-table for the dth transformation; r: Reward; ϵ: Predicted
probability for randomly sampling md; γϵ: Decay factor for ϵ

Output:M: Well-trained DL model
1 Initial pQ-table with 0 at each position
2 for epoch in epochs do
3 ϵ← γϵ · ϵ
4 for B1, B2 in Dtrain do
5 for Ii in B1 do
6 Randomly sample Od

i s (1 ≤ d ≤ D) from O
7 Sample md

i s (1 ≤ d ≤ D) based on Qd through ϵ-greedy
8 Augment Ii to I ′i with Eq. 1
9 end

10 Stack I ′is to form B′
1, and train M to M′ using B′

1

11 Calculate r according to Eq. 2
12 for Ij in B2 do
13 Randomly sample Od

j s (1 ≤ d ≤ D) from O
14 Sample md

j s (1 ≤ d ≤ D) based on Qd through ϵ-greedy
15 Augment Ij to I ′j with Eq. 1
16 end
17 Stack I ′js to form B′

2, and train M′ to M′′ using B′
2

18 Calculate Q′ using Eq. 4
19 Update pQ-table according to Eq. 3
20 M←M′′

21 end
22 end

To update the pQ-table, we use the following equations:

rd,m
d

=

{
0, if ∀i, O : Od,md

i is not sampled, 1 ≤ i ≤ B
p̂, otherwise.

(2)

Qd,md

← Qd,md

+ α(rd,m
d

+ γQ′ −Qd,md

), (3)

where p̂ is the average probability of the correct class for I ′is with Od,md

i sampled,
Qd,md

is the value of pQ-table at position (d,md), α is the learning rate for
updating the pQ-table, γ is the discount factor, and Q′ is the estimated value of
current strategy for selecting mds.

We use two batches as a unit for exploiting the current policy and evaluating
its value, respectively. This design leverages the observed value directly from the
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real fluorescence glioma boundary images to estimate the performance of the
current pQ-table and further adjust the policy to better represent the dataset’s
features. Therefore, Q′ in Eq. 3 is evaluated using the average predicted proba-
bility of the correct class on the second image batch, which is formulated as

Q′ = p̂j , 1 ≤ j ≤ B, (4)

where p̂j is the average predicted probability of the correct class on the second
image batch. Note that the DL model parameters are updated after each image
batch, while the pQ-table in EEA is only updated after utilizing the second
image batch. The general pipeline of the proposed EEA is shown in Fig. 1.

2.4 Explore and Exploit in Glioma Boundary Recognition

The magnitude sampling using the pQ-table exploits the priors learned during
training. Meanwhile, an ϵ-greedy strategy is adopted for exploration, allowing a
probability ϵ to randomly sample mds without considering pQ-table. To balance
exploration and exploitation, we further introduce a decay factor γϵ for the
ϵ-greedy strategy. At the beginning of training, DL models require more image
variants to improve generalization [9]. As training progresses, the models become
capable of extracting general features from images, thus needing to exploiting
a refined data distribution. Therefore, the value of ϵ is expected to gradually
decrease with training. We take an exponential decay strategy, where ϵ is decayed
at the beginning of each epoch. The pseudo-code for training a glioma boundary
recognition model with EEA is shown in Algorithm 1.

3 Experiments

Dataset. A homemade dataset of 2025 (non-tumor:tumor=562:1463) ex-vivo
glioma tissues at boundaries from 34 patients, including corresponding WL, NIR-
I, and NIR-II images, is established for evaluating EEA (Fig. 2). The fluorescence
molecular images represent fluorescence intensity, with each pixel normalized to
range [0, 1]. The gold standards for tumor and non-tumor are determined by
postoperative pathology. Note that this dataset is small-scale for DL models.
Therefore, we adopt 5-fold cross-evaluation at the patient-level to measure the
performance of different settings. We utilize the multi-modal data in 3-channel
and 9-channel settings according to the model design. For the 3-channel data, all
WL images are first transferred into grayscale images, then concatenated with
NIR-I and NIR-II images. For the 9-channel data, specially used in DLS-DARTS
[27], all NIR-I and NIR-II images are first processed into RGB format and then
concatenated with WL images.

Evaluation Metrics. We use accuracy (Acc), specificity (Spe), sensitivity
(Sen), F1 score, and area under receiver operating characteristic curve (AUC)
to measure the performance of different settings. Since performance evaluation
across multiple metrics is usually non-intuitive and we aim to improve the general
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performance of DL models, we additionally introduce the harmonic mean (HM)
of all the metrics to compare the performance between different DA methods.

Implementation Details. In our experiments, the number of magnitude levels
N is set to 11, augmentation depth D is set to 2, learning rate for pQ-table α
is set to 0.01, and the discount factor γ is set to 0.98. ϵ starts from 1.0 and
gradually decays to a minimum value of 0.1, with the decay factor γϵ set to
0.95, 0.975, and 0.985 for epochs 50, 110, and 200, respectively. More details are
provided in the Supplementary Materials.

We select four different DL architectures to evaluate the performance of
EEA: ResNet-based architecture (ResNet-18) [8], MobileNet-based architecture
(EfficientNet-B0) [24], vision Transformer-based architecture (DeiT-Tiny) [25],
and a directly transferred multi-modal neural architecture search-based archi-
tecture (DLS-DARTS) [15,27]. All models use Adam as the optimizer, with a
cosine annealing learning rate decay schedule [16]. For models apart from DLS-
DARTS, Dropout [23] with a 0.5 probability is introduced to avoid overfitting on
the training data. DeiT-Tiny and DLS-DARTS further introduce DropPath [12]
with a 0.2 probability for regularization. Since the dataset is imbalanced, focal
loss [14] with αfocal set to [1.0, 0.33] and γfocal set to 2.0 is used. Hyperparame-
ter settings for training DL models are selected based on the original papers and
tuned on our data to achieve satisfactory performance due to the feature gaps
between natural images and fluorescence molecular images.

3.1 Comparison to Other Data Augmentations

All models are trained from scratch, with the former three using 3-channel data
while DLS-DARTS uses 9-channel data. Basic augmentation, including random
crop, horizontal flip, and vertical flip, is applied to all experiments at the begin-
ning of augmentation. We compare EEA with two widely adopted automatic DA
methods, AA [5] and RA [6], in new tasks, as well as with a manually designed
DA method CutMix [30], which is widely used in medical image recognition [17].
Note that the usage of CutMix and other automatic DA is agnostic, allowing
them to be combined.

As shown in Table 1, models training with EEA achieve the best perfor-
mance across most settings and metrics, indicating its advantage in improving
the generalization of DL models over the compared methods. It is noteworthy
that automatic DA negatively affect the recognition of glioma boundaries, con-
sistent with previous reports [6,18] due to over transformation. Only EEA shows
positive effect in DLS-DARTS. DLS-DARTS prefers automatic DA with Cut-
Mix in AA and RA, but not in basic augmentation and EEA. We attribute
this contradiction to the improvements in the representation of the augmented
samples in AA and RA with soft labels generated by CutMix. However, this
improvement cannot compensate the negative effect of these two methods. Con-
versely, in basic augmentation and EEA, the representation of the augmented
samples is adequate for recognition, where the mixture of two images introduces
over-transformation and bias to the original representation.
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Table 1. Performance of different DA using different types of DL architectures on
fluorescence glioma boundary recognition. CM: CutMix. Bold: The best performance.

ResNet-18 EfficientNet-B0
Augmentation Acc Spe Sen F1 AUC HM Acc Spe Sen F1 AUC HM
Basic 0.8175 0.7841 0.8381 0.8656 0.8596 0.8319 0.7968 0.6694 0.8468 0.8564 0.8248 0.7924
CutMix 0.8323 0.7299 0.8748 0.8825 0.8669 0.8331 0.7925 0.7362 0.8183 0.8486 0.8366 0.8044
AA 0.8036 0.7400 0.8362 0.8566 0.8495 0.8148 0.8010 0.7377 0.8356 0.8552 0.8553 0.8144
AA+CM 0.8138 0.7696 0.8402 0.8658 0.8597 0.8283 0.7980 0.7238 0.8348 0.8534 0.8284 0.8050
RA 0.8030 0.7291 0.8417 0.8569 0.8560 0.8143 0.7668 0.6909 0.7995 0.8301 0.8149 0.7771
RA+CM 0.8097 0.7473 0.8391 0.8614 0.8609 0.8214 0.7835 0.7005 0.8216 0.8419 0.8296 0.7919
EEA(Ours) 0.8146 0.8023 0.8331 0.8606 0.8855 0.8381 0.8046 0.7123 0.8474 0.8601 0.8600 0.8127
EEA(Ours)+CM 0.8419 0.8041 0.8684 0.8851 0.8785 0.8545 0.8224 0.7245 0.8678 0.8728 0.8752 0.8282

DeiT-Tiny DLS-DARTS (use architecture in [27])
Augmentation Acc Spe Sen F1 AUC HM Acc Spe Sen F1 AUC HM
Basic 0.8039 0.6356 0.8627 0.8610 0.8144 0.7855 0.8816 0.7963 0.9136 0.9192 0.8995 0.8796
CutMix 0.7795 0.7171 0.8128 0.8389 0.8282 0.7927 0.8704 0.7889 0.8974 0.9106 0.8807 0.8674
AA 0.7871 0.6449 0.8419 0.8485 0.7788 0.7726 0.8389 0.7933 0.8603 0.8844 0.8786 0.8498
AA+CM 0.7795 0.7293 0.7957 0.8339 0.7958 0.7854 0.8483 0.7889 0.8724 0.8927 0.8777 0.8544
RA 0.7991 0.6914 0.8283 0.8537 0.8074 0.7917 0.8601 0.7499 0.8982 0.9040 0.9017 0.8584
RA+CM 0.7837 0.7076 0.8124 0.8423 0.8155 0.7894 0.8776 0.7840 0.9098 0.9163 0.8913 0.8730
EEA(Ours) 0.7942 0.7006 0.8312 0.8516 0.8411 0.7997 0.9127 0.7863 0.9514 0.9416 0.9042 0.8950
EEA(Ours)+CM 0.8099 0.6944 0.8523 0.8647 0.8400 0.8071 0.8631 0.7851 0.8902 0.9048 0.8954 0.8654

3.2 Impact of the Number of Magnitude Levels

The number of magnitude levels determines both the difficulty of learning EEA
and the diversity of the augmented images, which is especially important when
limited training data of fluorescence glioma boundary tissues is available. This
value can be intuitively understood as the number of choices for the bandit. We
therefore explore the impact of this parameter, with Ns set to 2, 3, 11, and 31, re-
spectively. The selections of these values are based on previous works [5,6] (value
11 and 31) and represent EEA with or without different deformations (value 2
and 3). As shown in Table 2, both too few and too many arms severely hurt
performance. Setting the parameter N = 11 provides a satisfactory compromise
between difficulty and diversity. However, the optimal value may require further
exploration.

3.3 Ablation Studies

We further conduct ablation studies to show the contribution of each design in
EEA. As shown in Table 3, some metrics achieve the best results when using
cross entropy loss, which is influenced by the imbalanced fluorescence glioma
boundary dataset. Specifically, specificity is significantly improved when using
focal loss. We also find that the decay strategy of ϵ contributes to both specificity
and the final HM, indicating that more exploration at the beginning of training is
valuable. Additionally, we introduce a baseline that randomly selects md

i s during
training without using the pQ-table, which shows a noticeable performance drop
across almost all metrics. These experiments demonstrate that the synergistic
effect of designs in EEA contributes to the performance in glioma boundary
recognition.
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Table 2. Performance of different Ns
with CutMix using ResNet-18.

N Acc Spe Sen F1 AUC HM
2 0.8154 0.7108 0.8599 0.8704 0.8652 0.8196
3 0.8317 0.7251 0.8751 0.8819 0.8685 0.8320
11 0.8419 0.8041 0.8684 0.8851 0.8785 0.8545
31 0.8182 0.6909 0.8667 0.8728 0.8466 0.8129

Table 3. Ablation studies on settings of EEA
using ResNet-18. CE: Cross entropy.

Ablation part Acc Spe Sen F1 AUC HM
Original 0.8419 0.8041 0.8684 0.8851 0.8785 0.8545
Use CE loss 0.8558 0.6451 0.9410 0.9037 0.8711 0.8284
W/o ϵ decay 0.8457 0.6852 0.9086 0.8943 0.8701 0.8320
Random md

i 0.8191 0.6694 0.8835 0.8741 0.8537 0.8114

4 Conclusion

In this paper, an automatic DA method EEA is proposed to improve the perfor-
mance of different types of DL models in fluorescence glioma boundary recogni-
tion. The adjustment of image deformations using a multi-armed bandit shows
satisfactory performance improvements in small-scale fluorescence molecular im-
ages. The proposed EEA can be integrated into the traditional training pipeline
for better generalization, demonstrating great potential to aid surgeons in precise
glioma resection.
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