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Abstract. In the realm of medical image fusion, integrating informa-
tion from various modalities is crucial for improving diagnostics and
treatment planning, especially in retinal health, where the important
features exhibit differently in different imaging modalities. Existing deep
learning-based approaches insufficiently focus on retinal image fusion,
and thus fail to preserve enough anatomical structure and fine vessel de-
tails in retinal image fusion. To address this, we propose the Topology-
Aware Graph Attention Network (TaGAT) for multi-modal retinal image
fusion, leveraging a novel Topology-Aware Encoder (TAE) with Graph
Attention Networks (GAT) to effectively enhance spatial features with
retinal vasculature’s graph topology across modalities. The TAE encodes
the base and detail features, extracted via a Long-short Range (LSR)
encoder from retinal images, into the graph extracted from the reti-
nal vessel. Within the TAE, the GAT-based Graph Information Update
block dynamically refines and aggregates the node features to generate
topology-aware graph features. The updated graph features with base
and detail features are combined and decoded as a fused image. Our
model outperforms state-of-the-art methods in Fluorescein Fundus An-
giography (FFA) with Color Fundus (CF) and Optical Coherence To-
mography (OCT) with confocal microscopy retinal image fusion. The
source code can be accessed via https://github.com/xintian-99/TaGAT.

Keywords: Multi-modal Image Fusion · Graph Attention Network ·
Multi-modal Retinal Image.

1 Introduction

Multi-modal medical image fusion aims to combine the complementary infor-
mation from various medical imaging modalities, thereby aiding in more com-
prehensive diagnostics and treatment planning in brain, lungs, eye/retina, and
cardiac [1]. In ophthalmology, this can involve the fusion of Color Fundus (CF)
images with Fluorescein Fundus Angiography (FFA), Optical Coherence To-
mography (OCT) with Fundus images, and OCT with confocal microscopy im-
ages [16], among others. An example illustrating the need for fusion arises when
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the contrast between the retinal vasculature and the background in CF is lim-
ited, thereby complicating the analysis of small retinal vessels. Conversely, FFA
images enhance the visibility of the retinal vasculature by employing a fluores-
cent dye [5]. The fusion of CF and FFA can integrate the high-resolution detail
of pathologies in CF images with the enhanced vascular contrast from FFA.
This integration furnishes a more detailed and comprehensive representation of
the retinal structure [8], which can facilitate the early detection, accurate diag-
nosis, and effective monitoring of ocular diseases such as Diabetic Retinopathy
(DR) [20]. The results of image fusion not only enhance the visualisation and
analysis of retinal diseases by clinicians but also potentially support a range
of downstream tasks, including vessel segmentation, disease classification, and
monitoring of disease progression [1,9,25,26,27].

The current deep learning-based multi-modal image fusion has achieved sig-
nificant advancements with two primary branches: generation-based methods
(e.g. diffusion model [6], generative adversarial networks [4]), and discrimination-
based methods (e.g. auto-encoder) [1]. DDFM [26] is a generative method util-
ising a denoising diffusion-based posterior sampling model to preserve more de-
tails for image fusion. SwinFusion [12] used cross-domain long-range learning
and the Swin Transformer [10] to efficiently integrate structure, detail, and in-
tensity across modalities. CDDFuse [25] is an auto-encoder-based model using
a decomposition loss to modulate between modality-specific and shared features
extracted through a dual-branch Transformer-CNN Long-short Range (LSR)
encoder to leverage CNN’s proficiency in capturing local spatial details and
Transformer’s capability in modelling long-range dependencies [17,23]. With
the advancements in feature representation capabilities of Graph Neural Net-
works [22,7], IGNet [9] employed a fixed node weights GNN for cross-modality
feature interaction. However, their approach to graph construction is solely based
on feature space and does not incorporate the spatial structures of the images.
Although these methods are effective in Visible-Infrared, MRI-CT, and MRI-
PET fusion tasks, our findings reveal that they often fail to capture detailed
features of the retinal vasculature and optic disc areas, particularly in abnormal
retinas, when applied to retinal image fusion.

To address this gap in retinal image fusion, we introduce the Topology-Aware
Graph Attention Network (TaGAT) for multi-modal retinal image fusion as
shown in Fig. 1. A Topology-Aware Encoder (TAE) is proposed to bridge the
base and detail spatial features in Euclidean space with the underlying graph
topology in the non-Euclidean geometric space of retinal vasculature. This lever-
ages the consistent topological properties of vascular structures across different
retinal imaging modalities, which enhances feature representation and model
generalisation. The TAE utilises base and detail features extracted by a Long-
short Range (LSR) Encoder as node features, combined with a graph derived
from the retinal vessel structure. With a Graph Attention Network (GAT), the
TAE dynamically updates the graph by aggregating and refining node features,
thereby connecting long-range structural features and preserving local details.
Finally, a decoder is applied to reconstruct the fused image from the base, de-
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Fig. 1. Illustration of the proposed TaGAT framework and TAE.

tail, and graph features. In conclusion, our contribution can be summarised as
follows.

1) We introduce an end-to-end framework of a topology-aware graph attention
network for multi-modal retinal image fusion.

2) We propose a GAT-based Topology-Aware Encoder, the first to bridge spatial
features with the consistent graph topology of retinal vasculature across
modalities. This enhances feature representation and model generalisation
and ensures the preservation of important anatomical structures and fine
vasculature details in the retinal image fusion.

3) Our method achieves leading performances in retinal image fusion evaluated
on both the DRFF(FFA-CF) and OCT2Confocal datasets, with exceptional
preservation of fine structures, details, and textures.

2 Methodology

The proposed framework for multi-modal retinal image fusion is shown in Fig. 1,
where the image inputs are registered, the significant features of each modality
are enhanced and finally fused. We employ an LSR encoder to extract the base
and detail features across modalities. The proposed GAT-based TAE encodes
and updates these features with the graph topology extracted from the vessel
structure. Then, the base, detail, and graph features are fused and decoded to the
image domain. We employ a two-stage training strategy [25], where the decoder
in Stage I reconstructs original images and in Stage II generates fusion images.

2.1 Graph Construction

The graph is constructed based on a tailored wavelet-based segmentation of
blood vessels [14] from retinal images I1 and I2 of Modality 1 and Modality
2, respectively. After vessel segmentation, the vascular branching points and
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endpoints are identified as graph nodes V , V = {vi}Ni=0, where vi is a vertex
i of the total N vertices. These nodes V are interconnected through edges E,
E = {ej}Mj=0, where ej is an edge j of the total M edges. The interconnection
is based on the connectivity of V within the vessel network. Consequently, we
have the graphs G1(V1, E1) and G2(V2, E2), which capture essential vascular
characteristics such as lines, shapes, and topological configurations. By identify-
ing the nodes’ locations within the images, the graph links the graph topology
(geodimensional space) and spatial domain (Euclidean space within the image
domain).

2.2 Long-short Range Encoder

The LSR Encoder [25] is a dual branch encoder with three components:
i) Shared Feature Encoder (SFE): Restormer block [24]-based encoder ex-

tracts shared shallow features ΦS
1 and ΦS

2 across modalities without increasing
computational complexity.

ii) Base Transformer Encoder (BTE): Lite Transformer (LT) block [21]-based
encoder extracts low-frequency base features ΦB

1 and ΦB
2 from the shared fea-

tures.
iii) Detail CNN Encoder (DCE): Invertible Neural Networks (INN) block [3]-

based encoder extracts high-frequency details ΦD
1 and ΦD

2 from the shared fea-
tures for preserving edge and texture information in both modalities.

2.3 Topology Aware Encoder

The proposed TAE encoder is designed to integrate spatial and topological in-
formation from retinal images. It comprises three main blocks:

Spatial-to-Graph Block (S2G) maps spatial features to the graph domain.
The concatenated base and detail feature maps are reduced in their number of
channels via convolution with a kernel size of 1 to compress features and reduce
computation:

Φreduced = Conv1×1

(
Concat

(
ΦB , ΦD

))
. (1)

Subsequently, at each node i of G(V,E), the feature patch Pi with the size
of p× p (p = 21) is extracted from Φreduced as expressed in Eq.2, where (xi, yi)
is the spatial location of node i.

Pi = Φreduced[:, (yi −
p

2
) : (yi +

p

2
), (xi −

p

2
) : (xi +

p

2
)]. (2)

Then, Pi are encoded through convolutions with kernel size 3 and LeakyReLU
activations.The global average pooling is applied to yield a single feature vector
fi for each node i:

fi = GlobalAvgPool (LeakyReLU (Conv3×3 (LeakyReLU (Conv3×3 (Pi))))) .
(3)
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Subsequently, the final graph node feature matrix Φnode = {f1, f2, ..., fN}.
Φnode ∈ RN×C , where N is the number of nodes and C is the dimensionality of
the feature vectors. The Φnode implicitly integrates spatial attributes into the
graph for further updating by GAT-GIU block.

GAT-based Graph Information Update Block (GAT-GIU) employs a
multi-layer, multi-head GAT [18] structure to iteratively refine node features
Φnode through attention-driven, weighted aggregation of neighbourhood infor-
mation. The node features first undergo a linear transformation, H = ΦnodeW ,
where W is a weight matrix. Then an attention mechanism is employed to com-
pute attention coefficients eij for each node pair (i, j). These coefficients are then
normalised across all neighbours to ensure selective attention αij :

αij =
exp(eij)∑

k∈Ni
exp(eik)

, eij = LeakyReLU(aT [Hi∥Hj ]), (4)

and the updated node features Φnode
updated based on weighted neighborhood feature

aggregation is defined as Eq. 5. The outputs of K heads multi-head attention
are averaged to produce Φnode

final. ELU is the Exponential Linear Unit [2].

Φnode
final =

1

K

K∑
k=1

Φnode
updated,k, Φnode

updated = ELU

∑
j∈Ni

αijHj

 . (5)

Graph-to-Spatial Block (G2S) first maps Φnode
final onto a feature matrix based

on corresponding node coordinates and then diffuse across the spatial domain
using convolutions with a larger kernel size (7 × 7) and dilation to extend the
spatial influence of node features. Skip connections are applied to merge the ad-
justed features for producing the final enhanced feature ΦG with graph topology.

2.4 Decoder

The decoder reduces the channel of concatenated features and uses the Restomer
block for decoding. In training stage I, it concatenates encoders extracted fea-
tures via channel dimension as input and the reconstructed image Î1 and Î2 as
output. In the training stage II, the decoder takes the concatenation of features
processed through feature fusion layers FB, FD, and FG (base, detail, and graph,
respectively) as input and a fused image If as the output.

2.5 Loss Function

For Training Stage I, the total loss LI
total is:

LI
total = L1 + α1L2 + α2Ldecomp + α3Lgraph, (6)
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L1 and L2 are the reconstruction losses [25] for Modality 1 and Modality 2,
ensuring original image information preservation during encoding and decoding:

Lm = LI
int(Im, Îm) + µLSSIM (Im, Îm), m ∈ {1, 2} (7)

where LI
int = ∥Im − Îm∥22 is the intensity loss [13], and LSSIM (Im, Îm) = 1−

SSIM(Im, Îm) [19].
The Ldecomp denotes the feature decomposition loss [25] :

Ldecomp =

(
LD
CC

)2
LB
CC

=

(
CC

(
Φ1

D, Φ2
D
))2

CC
(
Φ1

B , Φ2
B
)
+ ϵ

(8)

where CC (·, ·) is the correlation coefficient operator, ϵ is set to 1.01 keeping this
term positive. The Ldecomp extracts detail and base features by modulating the
correlation between low-frequency and high-frequency components accordingly.

Lgraph = 1− ⟨Φ1
G, Φ2

G⟩
|Φ1

G| · |Φ2
G|

(9)

The Lgraph employed cosine similarity emphasises the directional alignment of
GAT-encoded features over magnitude to maintain the vascular topology simi-
larity and adjacency information across modalities.

For Training Stage II, the total loss is:

LII
total = LII

int + α3Lgraph + α4Lgrad + α5Ldecomp, (10)

where Lgrad = 1
HW ∥ |∇If | −max(|∇I1| , |∇I2|)∥1 ensures more fine-grained tex-

ture information [13]. LII
int = 1

HW ∥If − max(I1, I2)∥1. ∇ is the Sobel gradient
operator. α1−5 are the hyperparameters.

3 Experimental Results and Discussion

3.1 Datasets

Two datasets were involved in our experiments. i) DRFF [5]: The DRFF dataset
comprises 30 abnormal and 29 normal unregistered FFA-Fundus pairs. We ap-
plied the segmentation and registration method from [14] and used a subset
comprising 20 normal and 20 abnormal pairs for training and 19 pairs for test-
ing. Data augmentation with flipping, rotating by ±8 degrees, and translating
by ±20 pixels are applied. ii) OCT2Confocal [15]: The dataset has paired
grayscale OCT and corresponding coloured confocal microscopy retinal images
from 3 mice afflicted with autoimmune uveitis. The registration is through man-
ual registration and confirmed by an ophthalmologist. We use this data to test
models trained on the DRFF dataset.
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SwinFusionIGNetDDFMConfocalOCT CDDFuse Ours

FFAFundus CDDFuse OursDDFM IGNet SwinFusion

PPA

Fig. 2. Visual comparison results in DRFF and OCT2Confocal.

3.2 Experimental Setup and Evaluation Metrics

Our computational experiments were conducted on a high-performance com-
puting environment featuring NVIDIA Tesla V100 GPUs (32 GB). Training is
conducted with the first stage 40 epochs and the second stage 80 epochs. The
images are resized to 288×360 pixels for training with a batch size of 1 due to
memory limitation. The Adam optimiser is employed, with an initial learning
rate of 10−4 and decay by a factor of 0.5 every 20 epochs.

In the LRS encoder, both the SFE and BTE are configured with 4 Restormer
blocks, utilising 4 attention heads (compared to 8 as used in CDDFuse [25])
within a 64-dimensional embedding space. The GIU block is equipped with 12
attention heads, each operating in a 64-dimensional space. The decoder employs
4 Restormer blocks with 4 attention heads. For the loss function, the weighting
coefficients α1 through α5 are finely tuned to the values of 1, 2, 0.5, 10, and 2.

We use eight metrics to measure the fusion results [11]: entropy (EN), stan-
dard deviation (SD), spatial frequency (SF), mutual information (MI), sum of
the correlations of differences (SCD), visual information fidelity (VIF), QAB/F

and SSIM. Higher metrics indicate that a fusion image is better.

3.3 Benchmarking Results

We tested our model and compared the fusion results with the existing bench-
marks including DDFM [26], IGNet [9], SwinFusion [12], and CDDFuse [25].

For the FFA-Fundus dataset, Table 1 (left) showcases our model’s leading
performance, particularly highlighted by the highest SD and SF, indicating
marked improvements in detail and structure preservation. Despite competitive
VIF and SSIM scores from SwinFusion and CDDFuse, our model demonstrates
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Table 1. Quantitative results of the DRFF and OCT2Confocal retinal image fusion.
Bold and Underline show the best and second-best results, respectively.

DRFF Retinal Images OCT2Confocal Retinal Images

EN SD SF MI SCD VIF QAB/F SSIM EN SD SF MI SCD VIF QAB/F SSIM

DDFM [26] 6.55 58.9 14.07 1.41 1.3 0.22 0.21 0.27 7.01 38.21 15.98 1.08 1.4 0.17 0.19 0.36
IGNet [9] 6.75 39.12 12.28 1.61 0.29 0.66 0.49 0.91 3.45 16.16 5.41 0.6 0.54 0.19 0.17 0.36
SwinFusion [12] 6.86 49.01 16.41 3.15 0.66 1.03 0.65 0.99 7.12 41.05 17.2 2.71 1.19 0.73 0.6 0.95
CDDFuse [25] 7.08 57.22 17.06 2.88 0.72 0.91 0.64 1.01 7.05 41.28 17.87 1.56 1.28 0.48 0.4 0.87
Ours 6.97 69 19.22 3.45 1.52 1.03 0.66 0.96 6.94 67.59 19.18 3.36 1.54 1 0.66 0.98

Table 2. Ablation experiments results with DRFF. Bold indicates the best value.

Configurations SD MI VIF SSIM

I w/o Lgraph 67.23 3.4 1.01 0.96
II w/o G2S 65 2.61 0.66 0.84
III w/o ΦB and ΦD for Decoder 39.26 1.02 0.25 0.41
IV w/o ΦG 66.69 3.38 0.64 0.92
V GAT → GCN 68.29 2.94 0.88 0.95

Ours 69 3.45 1.03 0.96

balanced performance across all metrics. Additionally, visual results in Fig. 2
(top 3 rows) highlight our model’s ability to clearly delineate the optic disc’s
shape and maintain fine vasculature and texture details, indicating the TAE
effectively encodes vessel topology into features to enhance focus on vascula-
ture. The first row in Fig. 2 also demonstrates our model’s ability to reveal
the Peripapillary Atrophy (PPA) region, characterised by atrophic changes and
irregular retinal pigmentation around the optic disc, which is challenging to dis-
cern in standard CF. Identifying PPA is crucial for diagnosing conditions like
diabetic retinopathy.

For OCT2Confocal dataset, our method outperforms other methods as shown
in Table 1 (right). However, visual results in Fig. 2 (bottom 2 rows) indicate
none of the tested methods offers sufficient detail and clarity preservation across
both modalities. Compared to CDDFuse, our results show a denoising effect and
exhibit fewer border artefacts. This improvement is attributed to our topology-
aware graph feature, which emphasises vessel-related information for fusion, ef-
fectively minimising irrelevant features such as noise.

Ablation Studies We verified the effectiveness of i) the graph loss Lgraph, ii)
G2S block, iii) ΦB and ΦD, iv) ΦG, and v) GAT. Table 2 shows that without
Lgraph or G2S block leads to a slight decrease in all metrics highlighting their
role in refining the feature representations. Removing ΦG slightly diminishes the
performance due to less attention around vessels. When excluding ΦB and ΦD

from the decoder, the marked reduction across all evaluated metrics suggests
that graph-related features are insufficient for reconstructing a full Euclidean



TaGAT For Multi-modal Retinal Image Fusion 9

space image primarily due to lack of the detailed pixel-level information. Substi-
tuting GAT with normal GCN [7] is to validate the utility of dynamic attention
mechanisms. The reduced performance suggests the effectiveness of the dynamic
attention mechanisms for GAT in feature aggregation.

4 Conclusion

This paper presents a multimodal retinal image fusion method with a novel GAT-
based TAE feature encoder that effectively bridges spatial-temporal and graph
topology characteristics across different modalities. Our approach has demon-
strated superior performance in enhancing key feature visualisation such as the
clarity of optic disc and PPA, the preservation of fine vasculature and texture
details in FFA-Fundus fusion with the ablation studies validating the signifi-
cance of each model component. In future work, we aim to enhance the fusion of
low-quality and high-resolution images and extend our approach to other types
of medical images with vessel structure, such as brain MRI and CT scans.
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