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Abstract. We propose a method that leverages multiple identical net-
work structures to generate and process diverse augmented views of the
same medical image sample. By employing contrastive learning, we max-
imize mutual information among features extracted from different views,
ensuring the networks learn robust and high-level semantic representa-
tions. Results from testing on four public and one private endoscopic sur-
gical tool segmentation datasets indicate that the proposed method out-
performed state-of-the-art semi-supervised and fully supervised segmen-
tation methods. After trained by 5% labeled training data, the proposed
method achieved an improvement of 11.5%, 8.4%, 6.5%, and 5.8% on
RoboTool, Kvasir-instrument, ART-NET, and FEES, respectively. Ab-
lation studies were also performed to measure the effectiveness of each
proposed module. Code is available at Mutual-Exemplar.

Keywords: Contrastive learning · Con-training · Medical image classi-
fication · Semi-supervised learning.

1 Introduction

Recent research indicates that many states in the United States are experiencing
doctor shortages [20]. Computer-aided diagnosis (CAD) may be performed on
a par with experienced doctors. Accurate segmentation of surgical tools is of
great value in developing CAD systems to automate a range of clinical proce-
dures. The dominant approach in medical image segmentation involves utilizing
an encoder-decoder architecture (e.g., UNet [17] and its variants, which incor-
porate multi-scale processing[21] and attention mechanisms [6]), and categorize
each pixel into specific classes. In a fully-supervised training context where sub-
stantial labeled data are available, the majority of current algorithms exhibit
satisfying performance. However, the requirement for annotated data imposes
additional burdens on medical experts, which contradicts our initial intention of
reducing their workload. To address this challenge, several purely unsupervised
learning [3] methods have been developed. Typically, the segmentation accuracy
of unsupervised learning methods has no standard in a wide range of image
applications. Therefore, semi-supervised learning (SSL) is a preferred approach
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[15] through training by combining a small amount of labeled images and a large
quantity of unlabeled images.

The state-of-the-art semi-supervised learning methods include cross pseudo
[7], mean teacher [18], deep co-training [16], and contrastive learning [4]. Cross
pseudo trains two perturbed networks on the same data, using pseudo-label to
learn the unlabeled data. Mean teacher trains two networks on the same data
with independent augmentation or noise. Teacher network updates with the ex-
ponential moving average weights of the student networks, making its predictions
less sensitive to noise. These stable predictions are then used to train the student
network. Deep co-training trains multiple networks on different subsets of the
data. It prevents the networks from getting stuck in a local minimum. However,
cross pseudo heavily relies on the accuracy of pseudo labels; mean teacher signif-
icantly depends on the learning ability of the student network; deep co-training
strongly depends on each subset providing complementary information not avail-
able in the others. Therefore, contrastive learning is preferred in practice. By
pulling positive pairs together and pushing negative pairs apart in an embedding
space, contrastive learning excels at learning efficient representations. The state-
of-the-art of contrastive learning for medical image segmentation is Pseudo-CL,
which combines contrastive learning with pseudo labels. Our method is proposed
as a semi-supervised technique to improve co-training with contrastive learning.
Mutual role models are inspired by Min-Max Similarity [13] by training two iden-
tical networks on different data. It measures the similarity between the outputs
of the decoders in the two networks using both Intersection over Union (IoU)
loss and binary cross-entropy (BCE) loss, and measures the similarity between
the outputs of the projectors in the two networks with contrastive loss.

Our contributions lie in addressing two challenges in co-training:

1. Data Waste: traditional co-training involves splitting the dataset into several
subsets and training multiple networks concurrently (hence the term "co").
Each network utilizes only one subset. Since each network trains on a dif-
ferent subset, the features extracted by them are distinct. The issue arises
because, in pursuing different features, each network does not have access
to the entire dataset. Typically, when two networks are used, either training
on half of the labeled data, either network wastes half of the labeled data.
In contrast, our proposed method uses data augmentation to obtain differ-
ent features, allowing each network to utilize entire labeled data, thereby
eliminating the problem of data waste.

2. Wrong Exemplar : contrastive learning-based co-training trains two networks
simultaneously. If one network makes high confidence but incorrect predic-
tion, using contrastive learning to make the features produced by the other
network more similar to those of the erroneous network can lead us further
away from correct answers. Traditionally, using two networks is an essen-
tial compromise because the labeled data is divided into subsets. If divided
into too many subsets, each network would receive insufficient data. Our ap-
proach employs more networks to mitigate the impact of individual network
errors on overall training.
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2 Methodology

This section introduces the proposed method, named Mutual Exemplar, illus-
trated conceptually in Fig. 1. Let D = X∪U be a dataset for training, where X =
{(Xi,Yi)}mi=1 and U = {Ui}ni=1 denotes the labeled and unlabelled datasets,
respectively. Mutual Exemplar trains three networks {F1 (·) ,F2 (·) ,F3 (·)} si-
multaneously. Mutual Exemplar applies different augmentations for the same
images from a mini-batch to build three different views and learn general fea-
tures. Specifically, applying weak augmentation (flips) for F1, applying moderate
augmentation (weak augmentation plus affine transformations, random grayscale
noise, gaussian blur, color jitter) for F2, and applying strong augmentation (mod-
erate augmentation plus rotations and GridMask) for F3.

In each epoch, we ensure that different data (whether labeled or unlabeled
data) are input into different networks. For the labeled data, we use the widely
used [17] combination of Intersection over Union (IoU) loss and the binary cross-
entropy (BCE) loss Lsup = LIoU + LBCE ,

Lsup = − (X log(Y ) + (1−X) log(1− Y )) +

(
1− X · Y

X + Y −X · Y

)
. (1)

For the unlabeled data, the network outputs a feature map from the projector
after the first layer of the encoder E (Aug (U)) and a prediction from the classi-
fier after the decoder P (Aug (U)). The feature map is saved as pseudo-labeled
feature map Y f and prediction as pseudo-labeled prediction Y p. In later epochs,
if the network outputs a feature map and prediction for the unlabeled data with
a lower supervised loss, the pseudo-labels are updated with the new feature map
and prediction. The unsupervised loss for the unlabeled data Lunsup consists of
a soft supervised loss Lsoft and a contrastive loss Lcont. Lsoft = LIoU + LBCE ,
where the saved prediction Y p is utilized as the pseudo-label,

Lsoft = − (X log(Y p) + (1−X) log(1− Y p)) +

(
1− X · Y p

X + Y −X · Y p

)
. (2)

Let qfi denotes the feature of a network’s feature map Ei(Augi(U)), k ̸=i

denotes the feature of another network’s feature map E̸=i(Aug̸=i(U)), and qY
f

denotes the feature of the pseudo-labeled feature map Y f . Different networks
have different input data, so features from other networks are used to build
negative pairs {qfi · k̸=i}. Due to structural similarities across medical images,
segmentation results from the same locations but different images are likely to
be similar. Therefore, we avoid using features from the same location of different
images to build the negative pair.

We use qY
f

to build the positive pair {qfi · qY f }, and use k ̸=i to build the
negative pairs {qfi · k̸=i}. The contrastive loss Lcont is defined as

Lcont = − log
exp

(
qfi · qY f

/τ
)

exp
(
qfi · qY f /τ

)
+

∑
k̸=i

exp (qfi · k̸=i/τ)
, (3)

where the temperature constant τ = 0.07.
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Fig. 1. Example of the proposed method applied to unlabeled data.

3 Experiments and Results

3.1 Experiment Settings

To ensure fairness in the comparison, we use the same network backbone de-
veloped in PyTorch [14] and implementation details as the state-of-the-art Co-
training method Min-Max Similarity. The networks {F1 (·) ,F2 (·) ,F3 (·)} share
the same UNet type model with an ImageNet-pretrained Res2Net [8] encoder.
The projector and classifier contains 3 and 2 stages, respectively. Each stage
contains a convolution layer and a max pooling layer. The optimizer is Adam
[12] (learning rate = 0.0001, β1 = 0.99, β2 = 0.999).

3.2 Datasets

Table 1 lists surgical tool datasets in this study. We use 4 public and 1 private
datasets for this study. Private Flexible Endoscopic Evaluation of Swallowing
(FEES) dataset [19] contains FEES videos from 100 patients. We use this dataset
to evaluate the performance of each method on the multiclass segmentation task.

3.3 Competing Methods and Evaluation Metrics

Competing methods include the current state-of-the-art methods mentioned in
the Section 1, including fully supervised UNet, UNet++, TransUNet, Cross
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Table 1. List of surgical tool datasets, ordered by total number of images.

Dataset Brief description training set test set

RoboTool [9] 514 images from 20 robotic
surgical videos. 412 images. 102 images.

Kvasir-instrument [11] 590 gastrointestinal endoscopic
images with surgical tools. 472 images. 118 images.

ART-NET [10] 816 images from 29
laparoscopic videos. 662 images. 154 images.

EndoVis’17 [1] 1,800 images from 8 robotic
surgical videos. 1,575 images. 225 images.

FEES (private) 10,000 images from 100 FEES
videos 8,000 images. 2,000 images.

Pseudo, Mean Teacher, Deep Co-training, Pseudo-CL and Min-Max Similarity.
The quantitative performance is evaluated by Dice Sørensen coefficient (DSC),
mean absolute error (MAE) and F1-score.

3.4 Experimental Results

The total numbers of images in 4 public datasets are ordered as - RoboTool
<Kvasir-instrument <ART-NET <EndoVis’17. It is observed from Tables 2 and
3 that Mutual Exemplar demonstrates superior performance over other meth-
ods, particularly as the number of images available for training decreases. On
the RoboTool and Kvasir-instrument datasets, we can observe a significant im-
provement. In the RoboTool and Kvasir-instrument datasets, the DSC of Mutual
Exemplar over the second-best method gradually increases with a decrease in
labeled data. On the RoboTool dataset, the DSC increases 2.1-11.5%. On the
Kvasir-instrument dataset, the DSC increases 0.9-8.4%.

On the ART-NET dataset, Mutual Exemplar achieves the best performance
when the networks are trained with 5 and 20% labeled training sets. For the
50% labeled training sets, the performance of Mutual Exemplar and the second-
best method are closely matched. On the EndoVis’17 dataset, which contains
a relatively abundant supply of labeled images for training, the performance
of Mutual Exemplar is similar to that of the best competing method, lagging
slightly by 0.6 and 1.1% for the 5 and 20% labeled training sets, respectively.

Performance Comparison on FEES dataset. Results from Tables 2
and 3 show that the performance of fully supervised UNet, UNet++, and Tran-
sUNet do not significantly differ. We argue that the four public segmentation
tasks are relatively easy in extracting meaningful features. On the FEES dataset,
fully supervised UNet++ and TransUNet significantly outperform UNet. Fur-
thermore, increasing the label ratio from 20% to 50% does not enhance UNet’s
performance to the same extent as UNet++ and TransUNet, suggesting that
UNet’s performance is constrained by its simpler network structure. Results
from Table 4 show that Mutual Exemplar and Pseudo-CL consistently outper-
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Table 2. Segmentation results of RoboTool and Kvasir-instrument datasets. For net-
works trained on various label-ratio training sets, the best result is in bold and the
second-best result is underlined, with evaluations performed on the test set. Perfor-
mance differences between Mutual Exemplar and the best competing methods are
shown under the Mutual Exemplar’s results (↑ better, ↓ worse.)

Dataset Method DSC MAE

R
ob

oT
oo

l

Fully Supervised UNet 0.786 0.088
Fully Supervised UNet++ 0.807 0.068

Fully Supervised TransUNet 0.808 0.063
Label ratio la 5% 20% 50% 5% 20% 50%

UNet 0.516 0.661 0.730 0.075 0.133 0.105
UNet++ 0.500 0.691 0.734 0.152 0.098 0.087

TransUNet 0.516 0.718 0.732 0.123 0.087 0.090
Mean Teacher 0.575 0.742 0.784 0.137 0.074 0.061

Deep Co-training 0.519 0.714 0.752 0.143 0.080 0.068
Cross Pseudo 0.559 0.711 0.758 0.147 0.083 0.069

Min-Max Similarity 0.646 0.781 0.831 0.104 0.058 0.046
Pseudo-CL 0.650 0.771 0.801 0.098 0.056 0.045

Mutual Exemplar 0.725 0.807 0.848 0.079 0.051 0.042
↑ 11.5% ↑ 3.3% ↑ 2.1% ↑ 19.4% ↑ 8.9% ↑ 6.7%

K
va

si
r-

in
st

ru
m

en
t

Fully Supervised UNet 0.901 0.027
Fully Supervised UNet++ 0.893 0.023

Fully Supervised TransUNet 0.905 0.015
Label ratio la 5% 20% 50% 5% 20% 50%

UNet 0.706 0.730 0.799 0.075 0.055 0.043
UNet++ 0.567 0.736 0.823 0.085 0.041 0.028

TransUNet 0.541 0.753 0.867 0.093 0.029 0.015
Mean Teacher 0.605 0.788 0.892 0.065 0.031 0.020

Deep Co-training 0.489 0.764 0.866 0.084 0.045 0.027
Cross Pseudo 0.709 0.824 0.894 0.051 0.037 0.020

Min-Max Similarity 0.776 0.874 0.925 0.043 0.024 0.013
Pseudo-CL 0.720 0.819 0.910 0.062 0.041 0.023

Mutual Exemplar 0.841 0.899 0.933 0.039 0.020 0.012
↑ 8.4% ↑ 2.9% ↑ 0.9% ↑ 9.3% ↑ 16.7% ↑ 7.7%

form the fully supervised UNet, indicating they enable the network to learn
better representations, thereby augmenting UNet’s capabilities.

Ablation study. Mutual Exemplar introduces four main modifications over
the state-of-the-art Co-training method. The first modification is ensuring that
each network learns from the entire training dataset (Entire training), the scond
is using three networks (Tri-view), the third is applying three augmentations
(Tri-Aug), and the fourth is employing a method similar to pseudo-label (P-
label). Using Tri-view without Tri-Aug is achieved by having two out of the three
networks use the same strong augmentation. Employing Tri-Aug without Tri-
view is also achieved by three networks. One network uses strong augmentation,
and another uses moderate augmentation. The weights of these two networks
are determined by their average. Results in Table 4 indicate that each proposed
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Table 3. Segmentation results of ART-NET and EndoVis’17 datasets.

Task Method DSC MAE

A
R
T

-N
E

T
Fully Supervised UNet 0.894 0.029

Fully Supervised UNet++ 0.908 0.023
Fully Supervised TransUNet 0.904 0.019

Label ratio la 5% 20% 50% 5% 20% 50%
UNet 0.660 0.713 0.812 0.072 0.062 0.038

UNet++ 0.717 0.761 0.866 0.053 0.051 0.030
TransUNet 0.685 0.764 0.841 0.047 0.043 0.032

Mean Teacher 0.747 0.835 0.889 0.051 0.033 0.021
Deep Co-training 0.726 0.820 0.875 0.049 0.033 0.021

Cross Pseudo 0.759 0.824 0.874 0.047 0.035 0.023
Min-Max Similarity 0.784 0.869 0.917 0.045 0.029 0.017

Pseudo-CL 0.756 0.835 0.890 0.050 0.032 0.029

Mutual Exemplar 0.835 0.890 0.919 0.032 0.021 0.018
↑ 6.5% ↑ 2.4% ↑ 0.2% ↑ 28.9% ↑ 27.6% ↓ 5.9%

E
nd

oV
is

’1
7

Fully Supervised UNet 0.894 0.027
Fully Supervised UNet++ 0.909 0.026

Fully Supervised TransUNet 0.904 0.029
Label ratio la 5% 20% 50% 5% 20% 50%

UNet 0.823 0.869 0.885 0.057 0.040 0.029
UNet++ 0.825 0.882 0.890 0.058 0.044 0.041

TransUNet 0.837 0.873 0.882 0.047 0.039 0.035
Mean Teacher 0.875 0.901 0.910 0.037 0.028 0.024

Deep Co-training 0.848 0.895 0.895 0.038 0.026 0.026
Cross Pseudo 0.886 0.909 0.913 0.029 0.025 0.021

Min-Max Similarity 0.909 0.931 0.940 0.023 0.018 0.017
Pseudo-CL 0.919 0.922 0.929 0.024 0.023 0.021

Mutual Exemplar 0.919 0.925 0.930 0.021 0.020 0.019
↑ 0% ↓ 0.6% ↓ 1.1% ↑ 8.7% ↓ 11.1% ↓ 0.9%

method enhances segmentation performance to varying degrees. Notably, em-
ploying Tri-Aug and P-label without Tri-view essentially mirrors a mean teacher-
like operation, where the expectation is that average weights make the network
more robust. However, the outcome is lower performance. We argue that the
averaging process dilutes the distinct perspectives introduced by augmentation.

Limitations and Future Works We conducted experiments of Lesion Seg-
mentation using datasets from Fluorescence Microscopy [5], Heart MRI [2], and
Spleen CT (details can be found in the Supplementary Material), finding that the
proposed method did not show significant improvement over Pseudo-CL, which is
the state-of-the-art contrastive learning method for lesion segmentation. Pseudo-
CL can be considered as a combination of contrastive learning, pseudo-labeling,
and mean teacher. The teacher network utilizes the mean weights of the stu-
dent networks, making its pseudo-labels less sensitive to noise. We attempted to
optimize the proposed Mutual Exemplar using the mean teacher concept; that
is, we did not directly update the pseudo-labels with the new feature map and
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Table 4. Segmentation results of FEES dataset and ablation study. ✓✓indicate that
each network learns from the entire training dataset.

Task Method DSC MAE
F
E

E
S

Fully Supervised UNet 0.688 0.098
Fully Supervised UNet++ 0.794 0.068

Fully Supervised TransUNet 0.803 0.063
Label ratio la 5% 20% 50% 5% 20% 50%

UNet 0.655 0.679 0.682 0.102 0.099 0.098
UNet++ 0.652 0.713 0.776 0.101 0.083 0.068

TransUNet 0.649 0.720 0.780 0.099 0.077 0.065
Mean Teacher 0.651 0.657 0.704 0.097 0.087 0.079

Deep Co-training 0.689 0.722 0.723 0.086 0.077 0.072
Cross Pseudo 0.668 0.685 0.709 0.091 0.081 0.079

Min-Max Similarity 0.658 0.677 0.691 0.101 0.094 0.091
Pseudo-CL 0.736 0.748 0.792 0.081 0.065 0.056

Mutual Exemplar 0.779 0.811 0.837 0.067 0.053 0.047
↑ 5.8% ↑ 8.4% ↑ 5.7% ↑ 17.3% ↑ 18.5% ↑ 16.1%

A
bl

at
io

n
St

ud
y Tri-view Tri-Aug P-label

✓ ✓ 0.622 0.732 0.763 0.107 0.077 0.070
✓ ✓ 0.626 0.723 0.744 0.115 0.079 0.069

✓ ✓ 0.649 0.761 0.806 0.113 0.069 0.059
✓✓ ✓✓ 0.720 0.733 0.785 0.075 0.072 0.065
✓✓ ✓✓ 0.694 0.731 0.771 0.080 0.070 0.066

✓✓ ✓✓ 0.753 0.799 0.828 0.070 0.055 0.050

prediction, but instead used the average of the new feature map and prediction
with the old feature maps and predictions. Unfortunately, this did not signifi-
cantly enhance the segmentation performance of Mutual Exemplar. However, we
believe that future research could explore combining the mean teacher approach.

Another reason the proposed method has no significant improvement in Le-
sion Segmentation accuracy may be that it requires each network to generate
distinct features from images with different augmentations. In Surgical Tools
Segmentation, the greater difference between tools and the human body, am-
plified by augmentations, provides more beneficial information for contrastive
learning. Future work will explore the impact of augmentations on feature gen-
eration to improve Mutual Exemplar’s performance in Lesion Segmentation.

4 Conclusion

We propose Mutual Exemplar, a semi-supervised image segmentation method
that employs contrastive learning to simultaneously train multiple networks
with identical structures. Mutual Exemplar outperforms all competing semi-
supervised methods across four public and one private surgical tools segmenta-
tion datasets.
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