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Abstract. Deep learning-based 3D medical image segmentation typi-
cally demands extensive densely labeled data. Yet, voxel-wise annotation
is laborious and costly to obtain. Cross-annotation, which involves anno-
tating only a few slices from different orientations, has recently become
an attractive strategy for labeling 3D images. Compared to previous
weak labeling methods like bounding boxes and scribbles, it can effi-
ciently preserve the 3D object’s shape and precise boundaries. However,
learning from such sparse supervision signals (aka. barely supervised
learning (BSL)) still poses great challenges including less fine-grained
object perception, less compact class features and inferior generalizabil-
ity. To this end, we present a Multi-Faceted ConSistency (MF-ConS)
learning framework for the BSL scenario. Our approach starts with an
active cross-annotation strategy that requires only three orthogonal la-
beled slices per scan, optimizing the usage of limited annotation budget
through a human-in-the-loop process. Building on the popular teacher-
student model, MF-ConS is equipped with three types of consistency reg-
ularization to tackle the aforementioned challenges of BSL: (i) neighbor-
informed object prediction consistency, which improves fine-grained ob-
ject perception by encouraging the student model to infer complete seg-
mentation from partial visual cues; (ii) non-parametric prototype-driven
consistency for more discriminative and compact intra-class features; (iii)
a stability constraint under mild perturbations to enhance model’s ro-
bustness. Our method is evaluated on the task of brain tumor segmenta-
tion from T2-FLAIR MRI and the promising results show the superiority
of our approach over relevant state-of-the-art methods.

Keywords: Barely-supervised · Cross-Annotation · Consistency.

1 Introduction

3D Medical image segmentation plays a pivotal role in computer-aided diagnosis.
Developing high-performing segmentation models, however, hinges on the avail-
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ability of extensively labeled voxel-wise data. This requirement is both resource-
intensive and costly, necessitating significant time and expertise from radiolo-
gists. Semi-supervised learning (SSL) [22] has emerged as a promising approach
to reduce the annotation burden via learning from a small densely labeled sub-
set and an abundant unlabeled subset. Typically, the labeling strategy for SSL
involves randomly selecting a few samples for dense labeling. However, this stan-
dard approach of budget allocation often results in annotation redundancy, with
the limited labeling budget being allocated across too few samples. Intuitively, if
we utilize more budget-friendly labeling methods for the selected scans, we can
annotate more samples, thereby increasing the diversity of the labeled pool.

Regarding budget-friendly labeling, conventional methods such as image-level
annotations [8], bounding boxes [14], scribbles [11, 30], and point annotations [10]
are widely used. However, these strategies still result in a notable disparity in
performance due to their inability to provide important boundary or inter-slice
information, thereby hindering the establishment of the model’s spatial object
perception. Beyond these, cross-annotation, which entails annotating only a few
slices from different orientations, has recently emerged as an attractive strat-
egy for labeling 3D images, offering an efficient yet effective way to capture the
shape and precise boundaries of 3D objects [3, 4]. Thus, this study investigates
effective learning strategies under the cross-annotation paradigm, a scenario we
refer to as barely supervised learning (BSL). Specifically, we propose annotat-
ing just three orthogonal slices for regions of interest from axial, sagittal and
coronal views for each scan, as depicted in Fig. 1. This strategy considers the
3D spatial information and the differences between the three planes, providing
efficient and effective supervision signals for model training. However, learning
from such sparse supervision is more challenging than the typical SSL. As a
result, this cross-labeling strategy necessitates a well-structured and optimized
training framework to work in conjunction with human efforts.

Related Work. An intuitive approach to address slice-wise sparse supervision is
to utilize the inter-slice similarity of 3D medical images, employing slice-to-slice
registration to generate pseudo labels. The registration module can be jointly
trained model [9] or off-the-shelf tools like ANTs [1], with the latest work, DeSCO
[3], leveraging a co-training framework to exploit the registration-based pseudo
labels and orthogonal labels. However, obtaining satisfactory registration results
is a challenging task itself, especially for complex objects and the large variance
in adjacent slices. From another view, sparse supervision can be interpreted as
a challenging variant of semi-supervised learning (SSL) for extreme annotation
scarcity. Here, samples traditionally considered on a scan-wise basis are instead
investigated on a voxel-wise level, treating labeled voxels as individual labeled
samples, and the rest as unlabeled. So far, consistency learning has become a
mainstream SSL fashion [28, 6, 26, 27, 15, 24, 25, 21]. Yet, SSL inherently hinges
on effective knowledge transfer from labeled to unlabeled data. Such sparse su-
pervision poses great challenges to traditional SSL methods, including less fine-
grained object perception, less compact class features and inferior generalizability.
Thus, more effective designs for consistency regularization are called for BSL.
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Fig. 1. Illustration of the (a) active cross-annotation strategy and (b) the proposed
Multi-Faceted ConSistency (MF-ConS) learning framework.

To this end, we present a Multi-Faceted ConSistency (MF-ConS) learning
framework for the BSL scenario. Our approach starts with a cross-annotation
strategy that requires only three orthogonal labeled slices per scan and incor-
porates active learning to optimize the annotation budget allocation through
a human-in-the-loop process. Building on the popular teacher-student model,
MF-ConS features three types of consistency regularization to tackle the afore-
mentioned challenges in BSL: (i) neighbor-informed object prediction consis-
tency that encourages the student model to make associations and infer com-
plete segmentation from limited visual cues (via masking) and then ensures that
the outcomes are consistent in the segmentation space with those induced by
the teacher model using the entire image. Intuitively, higher consistency indi-
cates a stronger capability of fine-grained contextual object perception, serving
as effective self-supervised signals given sparse supervision. (ii) non-parametric
prototype-driven consistency that leverages the alignment between latent feature
space (e.g., prototypes) and decision space (traditional inductive outputs by the
model) to obtain more discriminative and compact intra-class features. Consid-
ering the scarcity of reliable labels in both sparsely-labeled data and unlabeled
data for prototype generation, our strategy involves the fusion of prototypes
derived from both data types to comprehensively represent the distribution of
the feature space instead of separate usage in previous SSL [27] with relatively
adequate ground truth. (iii) standard stability constraint that encourages consis-
tent predictions under mild perturbations to enhance model’s robustness. Our
method is evaluated on brain tumor segmentation and the promising results
show the superiority of our approach over relevant state-of-the-art methods.

2 Method

2.1 Active Cross-Annotation Strategy and Problem Formulation

Given a training set D of N volumes {X1, X2, . . . , XN} of image dimensions
X ∈ RH×W×D (H, W and D denote the height, width and depth), MF-ConS
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starts with a cross-annotation strategy. This strategy (Fig. 1 (a)) necessitates
only three orthogonal labeled slices from the axial, sagittal, and coronal views
for a subset of selected cases, effectively covering regions of interest (ROI) per
scan. Additionally, it employs active learning [19] to optimize the allocation of
the annotation budget via a human-in-the-loop process. This cross-annotation
approach, by spanning multiple planes, has been proven effective in ensuring
comprehensive coverage of the data distribution and efficiently capturing the 3D
spatial information of objects [3]. We denote the cross-annotated label for image
Xl as Y ca

l ∈ RH×W×D. Note that the flexibility of cross-annotation allows for
adjustments based on the complexity of the task and budget constraints. While
our study uses the baseline that labels one slice per plane, the strategy can be
adapted to label additional slices per plane for more challenging tasks or when
fewer training samples are available. Regarding the active selection mechanism,
we employ the classical entropy-based uncertainty sampling, which prioritizes
the top-K cases that exhibit the highest average entropy in each selection round
r to allocate resources to the samples that are most likely to enhance the model’s
learning. In general, our goal is to develop a segmentation model on a dataset
D, which includes a growing cross-annotated subset Dca = {(Xl(i), Y

ca
l(i))}

nca
i=1,

alongside the remaining unlabeled subset Du = {Xu(i)}Ni=nca+1.

2.2 Multi-Faceted Consistency Learning

Basic Architecture. As depicted in Fig. 1 (b), our basic architecture includes a
student segmentor FS and a teacher segmentor FT . The weights θ of FS are up-
dated via standard back-propagation, while the weights θ̃t for the t-th iteration
of FT are updated by the exponential moving average (EMA) of the student’s
weights, formulated as θ̃t = αθ̃t−1+(1−α)θt, where α is the EMA decay rate and
empirically set to 0.99 [28]. Besides efficiency, this EMA updating design can fos-
ter a self-ensembling slow-moving online teacher segmentor, which also assists in
preventing representation collapse [17] due to sparse and potentially imbalanced
supervision. Building on this architecture, we develop three types of consistency
regularization to address the key challenges faced in BSL: less fine-grained object
perception, less compact class features, and inferior generalizability.

Neighbor-Informed Object Prediction (NIOP) Consistency. To achieve
fine-grained contextual perception, we encourage the student model to make
associations [16] and infer complete segmentation from limited visual cues, as
exampled in Fig. 2 (a). Specifically, we split image X into several p × p × p
patches without overlap. Each patch is randomly masked with a probability of
δ, resulting in a masked input Xmsk. Xmsk is fed into the student segmentor,
resulting in the predicted probability map P s

msk = FS(Xmsk; θ). Then, the com-
plete input X is fed into the EMA (teacher) segmentor, and we use a sharpening
function to transform the probability output P t into the soft pseudo label Ŷ t

soft,

formulated as Ŷ t
soft =

(P t)1/β

(P t)1/β+(1−P t)1/β
, where β is the temperature of sharpen-

ing, empirically set to 0.1 [23]. We encourage consistent segmentation outcomes
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between P s
msk and Ŷ t

soft using mean absolute error (MAE), formulated as:

LNIOP = LMAE

(
P s
msk, Ŷ

t
soft

)
. (1)

Distinct from [7] that performs mask-then-reconstruct for pre-training, our NIOP
consistency advocates the task-specific mask-then-segment design. Intuitively,
greater consistency reflects an enhanced ability for fine-grained contextual object
perception because the model is compelled to execute implicit reconstruction of
masked patches, followed by high-level object segmentation.

Prototype-driven Consistency. A significant challenge arising from sparse
supervision is less compact and less discriminative class features [30], leading
to an ambiguous embedding space. To this end, we introduce a non-parametric
prototype-driven consistency learning scheme [20] to align the latent feature
space (e.g., prototypes) and decision space (inductive outputs by the model) [27,
12]. Let F s

l be the feature map of the cross-annotated image from the student
segmentor, and F t

u be the feature map of the unlabeled image from the teacher
segmentor. The feature map is obtained from the layer preceding the penulti-
mate convolution of the model and is then upsampled to match the image size
using trilinear interpolation. Generally, for each class, the process of confidence-

guided prototype aggregation [20] is defined as cclass =
∑

v[Ŷ
class
v ·Mclass

v ·Fv]∑
v[Ŷ class

v ·Mclass
v ]

,

where Ŷ class
v represents the one-hot class label; M class

v denotes the reliability
map, indicated by the prediction confidence. For cross-annotated data, Ŷ class

v

is derived by merging cross-annotation with the argmax pseudo label generated
by the student segmentor for unlabeled voxels, denoted as Ŷ mix

l . For unlabeled

data, Ŷ class
v is the argmax pseudo label generated by the teacher segmentor, de-

noted as Ŷ t
u . Combining with the aforementioned feature maps (F s

l and F t
u), we

can obtain the corresponding class prototypes {cbgl , cobjl } from cross-annotated
data and {cbgu , cobju } from unlabeled data. We anticipate that the prototypes can
well represent central tendencies and variability within each class, making them
robust representatives of entire class distributions. Empirically, the quality of
{cbgl , cobjl } can be higher at the early stage thanks to the sparse but effective su-
pervision. Consequently, we progressively fuse prototypes from cross-annotated
data and unlabeled data, formulated as cclassf = γcclassl + (1 − γ)cclassu , where
γ = 1/(1+ λpro) and λpro is a Gaussian ramp-up value that incrementally tran-
sitions from 0 to 1 during training, progressively giving more attention to the
unlabeled prototypes. As such, we obtain the fused prototypes {cobjf , cbgf }. Then,
we conduct a voxel-by-voxel comparison of these fused prototypes with the fea-
tures {F s

l , F
t
u} to derive the prototype-drive predictions, denoted as P pro,f

l for

cross-annotated data and P pro,f
u for unlabeled data. Specifically, P pro,f

l can be

obtained with the formulation P pro,f
l =

exp(20·cos(F s
l ,c

j
f))∑

j∈{obj,bg} exp(20·cos(F s
l ,c

j
f))

, where ‘cos’

denotes cosine similarity and ‘20’ is a scaling factor [20]. Similarly, we can obtain

P pro,f
u using F t

u and {cobjf , cbgf } for the unlabeled input. We promote consistency



6 X. Wu et al.

between the prototype-driven predictions and the model’s inductive outputs:

Lfpm = LMAE(P
pro,f
l , Ŷ mix

l ) + LMAE(P
pro,f
u , P t

u), (2)

where we use the one-hot format for Ŷ mix
l and P t

u is the classical model-based
prediction for the unlabeled input derived by FT .
Perturbed Stability Constraint. We utilize the standard stability constraint
as outlined by [17], due to its simplicity and effectiveness in enhancing the
model’s local smoothness and generalizability. Specifically, for the identical im-
age X subjected to different perturbations ξ and ξ′ (e.g., mild Gaussian noises
[26, 28]), we aim to align the pre-softmax predictions of the segmentor with those

of the EMA segmentor, formulated as Lsta = LMAE

(
F θ̃

T (X + ξ),Fθ
S(X + ξ′)

)
.

Total Loss. Overall, the final training loss L is summarized as:

L = Ll
sup(Dca) + λ[LNIOP (Dca,Du) + Lfpm(Dca,Du) + Lsta(Dca,Du)], (3)

where Ll
sup is the supervised loss for annotated voxels using partial cross-entropy

loss; λ is a trade-off weight scheduled by a time-dependent Gaussian function

λ(t) = 0.1 · e−5(1− t
tmax

)
2

, with tmax denoting the maximum training iteration.

3 Experiments

Dataset. We evaluate our method on the brain tumor segmentation dataset [2],
comprising 335 3D preoperative magnetic resonance images (MRI) from glioma
patients with modalities of T1, T1Gd, T2 and T2-FLAIR. Considering that
T2-FLAIR can well characterize the malignant tumors [29], we adopt the T2-
FLAIR images with paired ground truth of the entire tumor. The images are
preprocessed to the resolution of 1 × 1 × 1 mm3. We follow the same data
split as in [26], where the train/val/test sets include 250/25/60 cases. Here, we
define two budget settings, allowing 10% or 20% samples for cross-annotation.
Therefore, 25 or 50 scans will be ultimately chosen, leading to 75 or 150 labeled
slices (with 3 labeled slices per scan), corresponding to merely 0.22% or 0.43%
of the effort required by a fully dense labeling strategy across all training data.
Implementation and Evaluation Metrics. The framework is implemented
on PyTorch using an NVIDIA GeForce RTX 3090 GPU. We adopt the 3D V-Net
[13] as the backbone. During training, we randomly crop patches of 96× 96× 96
voxels as the input and use the sliding window strategy with stride of 64×64×64
voxels for testing. The batch size is set to 4 including 2 cross-annotated data
and 2 unlabeled data. The masking probability δ transits from 0.25 to 0.5 via a
Gaussian ramp-up function and the masking patch size p is set to 8 voxels. tmax

is set to 20,000. The initial learning rate is set to 0.01 and decayed with a power
of 0.9 after each iteration. We apply random flipping and rotating for weak data
augmentation. For a comprehensive evaluation, we adopt region-based metrics,
Dice score and Jaccard, and boundary-based metrics, average surface distance
(ASD) and 95% Hausdorff distance (95HD).
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Table 1. Quantitative comparison. ∗ denotes dense labeling. Cross-subject standard
deviations are shown in parentheses. AL: Active Learning. The best results are in bold.

Method
Setting Metrics

L/U (%) Labeled Slices Dice (%) ↑ Jaccard (%) ↑ 95HD (voxel) ↓ ASD (voxel) ↓
SupOnly 10%/0 75 67.21 (17.05) 52.99 (18.65) 14.12 (11.93) 4.63 (2.83)

MT [17] 10%/90% 75 77.91 (17.92) 66.86 (20.92) 21.63 (24.71) 2.50 (1.88)
UA-MT [28] 10%/90% 75 78.43 (19.71) 67.97 (21.58) 19.07 (16.70) 3.14 (3.57)
CPS [5] 10%/90% 75 77.98 (19.20) 67.27 (21.63) 18.81 (19.34) 2.75 (2.53)
ICT [18] 10%/90% 75 77.18 (19.26) 66.22 (21.84) 21.12 (25.38) 2.70 (2.65)
CPCL [27] 10%/90% 75 78.95 (17.68) 68.47 (20.48) 17.14 (17.67) 3.02 (2.59)
CAML [6] 10%/90% 75 77.87 (14.65) 65.92 (18.10) 19.06 (21.32) 2.38 (1.59)
ACMT [26] 10%/90% 75 76.68 (19.83) 65.70 (22.16) 19.81 (18.14) 3.23 (2.96)
UPCoL [12] 10%/90% 75 78.06 (18.98) 67.36 (21.64) 14.96 (17.80) 3.33 (3.39)
DeSCO [3] 10%/90% 75 75.32 (16.35) 64.08 (22.37) 22.34 (19.22) 3.19 (3.05)

MF-ConS 10%/90% 75 80.37 (14.46) 70.01 (15.39) 18.44 (18.65) 2.49 (1.53)
MF-ConS (+AL) 10%/90% 75 81.26 (13.59) 70.32 (16.58) 16.19 (20.01) 2.45 (1.57)

SupOnly 20%/0 150 67.91 (18.79) 54.18 (19.74) 12.14 (9.21) 4.45 (3.42)

MT [17] 20%/80% 150 77.12 (18.34) 65.90 (21.26) 13.18 (15.27) 3.14 (2.83)
UA-MT [28] 20%/80% 150 78.16 (13.07) 68.61 (17.15) 14.55 (16.13) 2.77 (1.91)
CPS [5] 20%/80% 150 79.83 (16.09) 69.08 (19.96) 15.62 (17.72) 2.52 (2.10)
ICT [18] 20%/80% 150 78.59 (13.28) 66.54 (16.63) 19.39 (24.70) 2.71 (1.81)
CPCL [27] 20%/80% 150 81.32 (14.01) 71.34 (17.91) 15.96 (21.32) 2.24 (1.64)
CAML [6] 20%/80% 150 76.95 (16.60) 65.16 (19.60) 18.88 (22.43) 2.88 (2.26)
ACMT [26] 20%/80% 150 79.76 (21.00) 67.77 (21.22) 19.02 (21.91) 2.86 (2.93)
UPCoL [12] 20%/80% 150 81.58 (12.49) 71.86 (16.19) 17.38 (20.25) 2.36 (1.57)
DeSCO [3] 20%/80% 150 78.03 (18.42) 66.43 (20.53) 17.97 (16.29) 4.33 (3.10)

MF-ConS 20%/80% 150 83.95 (11.43) 73.24 (15.28) 15.81 (21.38) 2.19 (1.12)
MF-ConS (+AL) 20%/80% 150 84.20 (10.71) 73.99 (13.97) 14.77 (22.19) 2.14 (1.35)

SupOnly (upper bound) 100%∗/0 34173 87.07 (7.90) 77.48 (11.45) 7.84 (8.09) 1.79 (1.49)

Comparison with State-of-the-art Methods. Table 1 presents the results of
different approaches, wherein only 10% and 20% training samples undergo cross-
annotation. We include recent state-of-the-art semi-/barely-supervised methods
[17, 28, 5, 18, 27, 6, 26, 12, 3] for comparison. The backbone and training proto-
cols are consistent to ensure fairness. The results are the average over three
runs to mitigate the variability in results due to online sampling. As observed,
our MS-ConS without active learning achieves {13.16%, 16.04%} Dice improve-
ments under {10%, 20%} cross-annotated settings compared to supervised-only
(SupOnly) baselines, showing its effectiveness in leveraging both cross-annotated
images and unlabeled images. Compared to competing approaches, MS-ConS
consistently yields notable improvements, showing the efficacy of multi-faceted
consistency learning in regularizing model training under sparse supervision.
Note that DeSCO [3] initially introduced cross-annotation as an efficient sparse
labeling strategy, employing the off-the-shelf image registration technique [1]
for label propagation. However, its performance in this task was found to be
mediocre, potentially due to suboptimal registration quality when dealing with
the heterogeneous characteristics of brain tumors. We can also notice that MF-
ConS further improves when integrated with active learning for the identification
and annotation of informative samples. Fig. 2 (e) presents exemplar 2D segmen-
tation results under the 10% cross-labeled setting. Consistently, the results of
our MF-ConS (+AL) align more precisely with the ground-truth masks. The
highlighted boxes reflect the reduction in false positive rates, underscoring the
practical effectiveness of our approach in tumor segmentation.

Ablation Analysis. To help better understand the multi-faceted consistency
learning, we visualize each consistency type in Fig. 2 (a-c). Fig. 2 (d) presents the
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Fig. 2. (a-c) Visualization of three types of consistency regularization. (d) Correspond-
ing ablation study on different types of consistency regularization. (e) Exemplar 2D
segmentation results with 10% cross-annotation budget.

ablation results quantitatively under the setting of 10% cross-annotation budget,
where Abla-(a), Abla-(b), and Abla-(c) denote the removal of the corresponding
consistency in Fig. 2 (a-c), i.e., LNIOP , Lfpm and Lsta. Note that the ablation ex-
periments all correspond to our best version, i.e., MF-ConS (+AL), and thus all
incorporate active learning. Specifically, Fig. 2 (a) illustrates how NIOP Consis-
tency, even with a case of masking ratio of 40%, allows the model to capture and
infer critical structural details for the high-level perception task, i.e., tumor seg-
mentation. Similar to typical masked image modeling [7], this regularization also
serves as self-supervised signals but with high-level task-specific nature. Mean-
while, it can be observed that prototype-driven consistency shown in Fig. 2 (b)
plays an important role in enhancing discriminative and compact feature learning
by closely aligning the model-based output with the non-parametric prototype-
driven output. Fig. 2 (c) illustrates the typical stability constraint in maintaining
the segmentation robustness to mild hand-crafted perturbations such as Gaus-
sian noise. The ablation result also demonstrates its necessity. Our complete
model, incorporating all three consistency mechanisms along with active learn-
ing, achieves the best performance, demonstrating the collective strength of the
multi-faceted consistency learning approach in our sparse annotation setting.

4 Conclusion

In this paper, we presented a Multi-Faceted ConSistency (MF-ConS) learning
framework for active barely-supervised 3D medical image segmentation. Starting
with an efficient active cross-annotation strategy, MF-ConS exploits both lim-
ited cross-labeled data and abundant unlabeled data via three types of consis-
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tency regularization, including neighbor-informed object prediction consistency,
non-parametric prototype-driven consistency and perturbed stability constraint,
effectively addressing the inherent challenges of sparse supervision including lim-
ited fine-grained object perception, less compact class features and inferior gen-
eralizability. We evaluated our method on brain tumor segmentation and demon-
strated its superior performance compared to other state-of-the-art approaches.
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