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Abstract. In the field of medical imaging, particularly in tasks related
to early disease detection and prognosis, understanding the reasoning
behind AI model predictions is imperative for assessing their reliability.
Conventional explanation methods encounter challenges in identifying
decisive features in medical image classifications, especially when dis-
criminative features are subtle or not immediately evident. To address
this limitation, we propose an agent model capable of generating counter-
factual images that prompt different decisions when plugged into a black
box model. By employing this agent model, we can uncover influential
image patterns that impact the black model’s final predictions. Through
our methodology, we efficiently identify features that influence decisions
of the deep black box. We validated our approach in the rigorous do-
main of medical prognosis tasks, showcasing its efficacy and potential to
enhance the reliability of deep learning models in medical image classi-
fication compared to existing interpretation methods. The code will be
publicly available at https://github.com/ayanglab/DiffExplainer.

Keywords: Counterfactual explanation · Diffusion model · Teacher-
Student learning · Explainable AI

1 Introduction

In this age where deep learning-based models are increasingly predominant, it
is of paramount importance for users to comprehend the rationale behind the
decisions made by these models, especially when these models are engaged in
high stake applications such as AI-based diagnosis and prognosis. Over the past
decade, Explainable AI (XAI) methods for medical image analysis have been
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developed, aiming to reveal semantically meaningful insights [10,17], which is
essential for providing guidance to medical practitioners in making informed
decisions or discovering novel biomarkers.

One major class of XAI methods falls under the paradigm of attribution
maps. Various methods for computing attribution maps include backpropaga-
tion [28,31], activation map [25,14], and perturbation-based[32,21,18], with the
common goal of highlighting the relative importance of each pixel to the model
prediction. While attribution maps have been relatively useful in identifying
salient regions for classification tasks on natural images, their utility has been
suboptimal for tasks where different classes share many common features, a sit-
uation often seen in image-based prognosis tasks. In these cases, patients may
have similar baseline images but different outcomes, and the granularity of tra-
ditional attribution maps can hardly pinpoint the human-interpretable differ-
ences that lead to different predictions and, therefore, fails to provide the exact
reasoning behind their decisions. To address this issue, Rudin et al. proposed
an interpretable model that calculates the similarity of query images to prede-
fined disease-outcome-related prototypes and integrates these similarities into
the final decision [22,2]. This approach enhances interpretability and reliability
substantially by grounding the model’s decisions in domain knowledge. However,
it requires both extensive prior knowledge and fine annotations, which are not
feasible when such knowledge is lacking, and this method may miss predictive
features not identified by clinicians. Hence, leveraging model-agnostic explana-
tion methods to detect fine-grained contributive features from deep classifiers
offer a promising solution to maintain both interpretability and performance.

Counterfactual explanation, initiated in [30], became an alternative line of
the traditional model-agnostic interpretation methods. Essentially, this approach
generates a variant of the original input, i.e. the counterfactual, which alters the
model’s prediction, serving to pinpoint the crucial features that are responsible
for this change. Notably, the means for generating the counterfactual examples
are greatly facilitated by the parallel developments of the Generative Adversarial
Networks (GANs) [7,8]. There has been an emergence of GAN-based counterfac-
tual explanation methods in medical classification tasks across various modali-
ties, including X-Ray [1,15,26,24,23], Magnetic Resonance Imaging (MRI) [29,6]
and ultrasound images [20] and histopathology images [12,24].

While making significant progress in generating realistic counterfactual im-
ages, existing counterfactual generation models still face three major limitations
that hinder their widespread adoption for explaining various classifiers. Firstly,
training GAN models is notoriously difficult, often requiring meticulous tuning
of hyperparameters to ensure stable training [13,4,6]. Secondly, explaining black-
box decisions requires the model to have the ability to reconstruct the original
query image without any manipulation applied. However, GAN-based models
often struggle to accurately reconstruct original images with rich textures, re-
sulting in ineffective counterfactuals where only certain features are altered from
the original images with more complex contents [24] and impeding their adoption
in more complex modalities such as histopathology and CT imaging. Thirdly,
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most counterfactual generation models require training with inputs from the
black-box classifiers they aim to explain [1]. This requirement significantly in-
creases training costs and complicates the application of these methods.

In this work, we develop a novel counterfactual method to address the afore-
mentioned limitations, leveraging diffusion-based generation [9,27] which has
surpassed GANs for many generative tasks [5,16]. We aim to achieve a more
stable training procedure, higher-quality, controllable counterfactual image gen-
eration performance and faster development of explanation models . Our main
contributions can be summarized as: (1). The proposed DiffExplainer, com-
bines teacher-student learning and Diffusion Autoencoders [19] for generating
counterfactual images to decode a given black box model. (2). Compared to
traditional attribution maps, DiffExplainer can accurately identify fine-grained
features underlying a black box’s decision for any given query image. Even for
instances with indeterminate classification results - typically a significant chal-
lenge for existing methods - our method can provide robust and coherent expla-
nations. (3). Compared to the existing counterfactual models, we are also the
first to develop counterfactual methods specifically for CT modalities and en-
able the manipulation of lossless reconstructed images. Moreover, DiffExplainer
is trained independently of the classifier, allowing for its direct adoption with dif-
ferent classifiers using the same modalities. This feature may facilitate its wider
adoption in various tasks in the future.

2 Method

An overview of our DiffExplainer framework is presented in Fig. 1 (A), which
showcases elucidating the operations of a black box pretrained classifier for lung
disease prognosis. The input of this classifier, which we hereafter refer to as the
teacher model, consists of four slices extracted from a CT scan of a patient. Our
DiffExplainer, crafted to discern correlated features for model’s decisions, com-
prises three sequentially applied steps with three sub-models. First, an encoder
model maps each slice to a latent representation, which are then combined into
a latent feature. Here, the encoder is trained as part of a Diffusion autoencoder
model, so that the latent feature therefore contains sufficient information for re-
construction. The feature vector is then sent into an agent model, which performs
knowledge distillation and arrives at a final feature representation that is aligned
with that of the black box teacher model, hence predicting similar classification
scores. This shallow student model is composed of two-layer linear model and
will provide the manipulation direction on the latent feature to increase/decrease
the score in a target class. In the second stage, we generate counterfactuals from
the manipulated features and reconstruct the original images from the original
feature from the diffusion model. Lastly, we can generate the difference heatmap
from the counterfactual images and the reconstructed images as well as their
scores in the black box. The difference maps will give clear indications of the
image regions that affect the predictions of the black box.
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Fig. 1: Framework of DiffExplainer. (A) The workflow of using DiffExplainer to
perform feature manipulation and counterfactual generation to understand the
impact of different regions in affecting the teacher model’s predictions. The two
key components are: (B) Diffusion autoencoder consisting of an encoder and a
DDIM generative decoder [27]; (C) Knowledge distillation for aligning the latent
feature from the diffusion autoencoder to that of the given black box.

2.1 Diffusion Autoencoder

A diffusion autoencoder model consists of an encoder that learns a latent rep-
resentation and a generative decoder that learns to reconstruct the original CT
slices. Both the encoder and decoder play crucial roles in the proposed Diff-
Explainer method and are pretrained jointly, as illustrated in Fig. 1 (B). The
encoder E compresses the input image x0 into a semantically meaningful low-
dimensional representation z ∈ R512. This feature space can be manipulated
through a subsequently introduced agent model. The decoder then generates
the reconstructed slice x̂0 from z and the noise injected input xT (T iterations
of Gaussian noise injection). The reconstruction is achieved by iteratively per-
forming noise removal with a conditional diffusion model Dθ:

x̂t−1 =
√
αt−1

(
x̂t −

√
1− αtDθ (x̂t, t, z)√

αt

)
+
√

1− αt−1Dθ (x̂t, t, z) ,with t = T, T − 1, ..., 1 (1)

where αt characterizes the variance schedule (for noise injection) [9], x̂T = xT =√
αTx0 +

√
1− αT ϵ and ϵ ∼ N (0, I). The encoder E and decoder D are trained
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concurrently as the way proposed in [19], optimizing for the noise reconstruction
loss with respect to θ and ϕ: L(ϕ,θ) = E ∥ϵ−Dθ (xt, t,Eϕ(x0))∥1.

2.2 Teacher-Student Learning for Agent Classifier

The agent classifier is designed to provide decisions aligned with the pretrained
teacher model, with additional interpretability. To achieve this goal, it is imple-
mented as a two-layer linear architecture, taking the latent space of the previ-
ously introduced autoencoder as input, as illustrated in Fig. 1 (C).

The key role of this two-layer agent classifier is to provide controllable ma-
nipulation directions for the input features, consistent with the classification
scores of the black box teacher model. To align the classification ability of the
two models, we transfer knowledge from the pretrained ‘black-box’ classifier to
the agent model by teacher-student learning techniques. Specifically, we engage
a linear layer to map the encoder extracted features to align with that of the
teacher model’s features, supervised by a L1 loss. The weight of the classification
layer in the agent model is fixed to match that of the teacher model.

2.3 Counterfactual Generation

After training the diffusion autoencoder and the agent model, counterfactual
images can be generated from a query image. These images are manipulated to
potentially modify the prediction scores of the teacher model, providing insights
into the reasoning behind the teacher model’s decisions. As illustrated in Fig. 1
(A), we denote a query image as Iq, the teacher model as C, and its classification
score as y, the features extracted from the diffusion model as q, the agent model
as A, and its corresponding prediction score as y′ = A(q).

The feature q can be readily manipulated to respectively increase or decrease
its score in the agent model as:{

qi+ = q + α
dy′

i

dq , I
′
qi+ = D(qi+), yi+ = C(I ′qi+)

qi− = q − α
dy′

i

dq , I
′
qi− = D(qi−), yi− = C(I ′qi−)

(2)

where α > 0 is the stepsize for controlling the manipulation scale, and i is the
target class for score manipulation. qi+ (resp. qi−) denotes manipulated features
with increased (resp. decreased) agent prediction score y′i+ (resp. y′i−). The cor-
responding counterfactual images are denoted as I ′qi+/−

, while the reconstructed
original image is I ′q = D(q).

2.4 Evaluation criteria for counterfactual generation

We define the following criteria as essential conditions that counterfactual im-
ages need to meet in order to effectively explain a black box model: (1) (Re-
construction ability) The generated counterfactual images should retain most of
the features present in the query sample (Iqi± ≈ Iq). When there is no manip-
ulation, the generated counterfactual should have minimal deviations from its
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query image and similar classification scores. (2) (Observable) The generated
counterfactual images should change certain features, that can be detected and
discerned by the human eye, while also preserving the overall context of the query
image unchanged. (3) (Manipulation) The classification score of the generated
counterfactual for the black box should change in the intended manipulation
direction, i.e. yi± should change in the same direction as y′i± changes.

3 Experiments

3.1 Dataset

We trained a DiffExplainer for counterfactual generations for a pretrained clas-
sification model that predicts the one-year mortality of patients with Fibrotic
Lung Disease (FLD). Specifically, we utilized two FLD datasets. The first cohort
is sourced from OSIC , with 27 patients deceased within one year and 704 pa-
tients surviving for one year. The second cohort is an in-house dataset collected
from hospitals in Australia, with 43 patients deceased within one year and 458
patients surviving for one year. In our experiments, we used only the first dataset
for training, and switched to the the second in-house dataset for evaluation.

3.2 Experimental setting

The black box classification model employs DenseNet121 as backbone, and cor-
respondingly the two-layer Agent model consists of 1024 neurons in the first
layer (aligned to the feature dimension of the black box) and two neurons in
the second layer for the two-classification task. For training the black box and
agent model, we partitioned this dataset into 5 folds for training and selected
the models with the highest sum of specificity and sensitivity. Both models are
trained with a batch size of 16 for 100 epochs, with learning rates of 1e-6 and
1e−4, respectively. The autoencoder, with an input size of 256×256, was trained
on slices from the OSIC dataset using eight V100 GPUs with a learning rate of
1e−4 and a batch size of 64 for 100 epochs.

3.3 Validity of the Agent Model

We first evaluate the consistency of the agent model in producing similar predic-
tions as its black box teacher model. To proceed, we designate the predictions
provided by the black box as the ‘ground truth’. We calculate the accuracy, sen-
sitivity, specificity, and F1 score for the agent model’s results with respect to this
‘ground truth’ on the test dataset, to validate if the agent model is indeed aligned
with its teacher model. Furthermore, we report the Kullback–Leibler (KL) di-
vergence for the two models’ predicted probability. We also conducted ablation
experiments to study how different training objectives affects knowledge distil-
lation and feature alignment, including L2 and L1 loss on feature space and KL

https://www.osicild.org/

https://www.osicild.org/
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divergence on the model’s output. The alignment performance under different
constraints is presented in Table 1. It can be seen that these different training
objectives are all effective in ensuring feature alignment.

Table 1: Alignment of agent model to teacher model.
Method AUC Accuracy Sensitivity Specificity F1 KL
MSE 0.99 0.95 0.91 0.97 0.92 0.18
L1 0.99 0.96 0.91 0.98 0.93 0.17
KL 0.99 0.96 0.91 0.98 0.93 0.17

3.4 Performance of the counterfactual generation

The Diffusion autoencoder achieves the best reconstruction quality while GAN-
based models fails to achieve acceptable reconstruction. The reconstruction from
our Diffusion autoencoder achieved an average PSNR of 35.28, SSIM of 0.99, and
a KL divergence for classification, demonstrating outstanding reconstruction ca-
pability. On the other hand, although capable of synthesizing realistic-looking
CT images, the conditional GAN and StyleGAN-based autoencoder models in
our experiments failed to accurately reconstruct the same textures such as airway
and vessel from the encoded features of the query image (this is also observed in
the histology reconstruction task in [24]).Since GAN based autoencoders failed
the reconstruction criterion, we did not continue to generate counterfactual ex-
amples.

DiffExplainer consistently pinpoints observable features upon which the decision
is based. We select the cases which are indeterminate to the ‘black box’ (similar
logits for each class) and manipulate it to achieve a confident score for each
class. As presented in Fig. 2, we generated the counterfactual examples which
can be confidently classified as the 1-year mortality and 1-year survival. The
difference between the counterfactuals and the original images are presented as
difference heatmaps, where red indicates the increased textures and blue indicate
the decreased textures. We can attribute the indeterminacy of these cases to the
lack of features which are leveraged by the ‘black-box’ classifier.

DiffExplainer allows for fine-grained control over the counterfactual generation,
enabling smooth transition from one classification result to another. In Fig. 2,
we illustrate the controllability of the counterfactual generation method by in-
crementally increasing the manipulation weight. The resulting generated images
were validated to exhibit a gradual augmentation in the decisions of the black
box classifier and manifestation of features.



8 Y. Fang et al.

Original:
Death: 0.25
Survival: 0.02

α = +10:
Death: 0.67
Survival: -0.24

α = +15:
Death: 0.81
Survival: -0.29

α = +20:
Death: 0.88
Survival: -0.33

α = +30:
Death: 0.90
Survival: -0.34

Reconstructed:
Death: 0.24
Survival: 0.10

α = −10:
Death: -0.08,
Survival: 0.42

α = −15:
Death: -0.25,
Survival: 0.61

α = −20:
Death: 0.22,
Survival: 0.78

α = −30:
Death: 0.12,
Survival: 0.88

Fig. 2: Counterfactual generation for ‘hard’ cases that the pretrained classifier
failed to assign confident predictions. Row 1: Counterfactuals with increasing
‘Death score’; Row 2: Counterfactuals with increasing ‘Survival score’.

3.5 Comparison to other XAI methods

We compare the difference heatmaps obtained by DiffExplainer approach to
the attribution maps from existing widely-employed XAI methods. We observe
that DiffExplainer can more accurately pinpoint theregions within the query
image influencing model decisions, with finer granularity, whereas other methods
can only localize to a coarse area (Grad-CAM methods) or to regions that are
incomprehensible (Saliency maps). For an indeterminate case, DiffExplainer is
capable of generating the missing features that can lead to confident decisions for
either class, thus explaining why the model arrived at its indeterminate decision,
a capability not matched by existing methods.

4 Conclusion

In this paper, we developed a counterfactual generation approach named Diff-
Explainer for explaining the decisions of a given black box classifier. Compared
to existing attribution methods, our approach can more accurately locate the
features influencing model decisions within the query image, has finer granular-
ity, and also allows enhanced controllability. We validate our approach on the
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Fig. 3: Comparison to other XAI methods. Blue and red areas indicate the ex-
isting features and missing features that contributes to the change in prediction.

challenging modality of CT scans, which posed significant difficulties for existing
methods. Our DiffExplainer distinguishes itself by providing high-quality recon-
structions, and the capacity to identify semantically meaningful features which
impact the classifier’s predictions. This capability enables users to uncover the
reasons behind each decision made by a given black box model. Combining Dif-
fExplainer with highly accurate black-box models presents an opportunity to
discover novel biomarkers.
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