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Abstract. Utilizing potent representations of the large vision-language
models (VLMs) to accomplish various downstream tasks has attracted
increasing attention. Within this research field, soft prompt learning has
become a representative approach for efficiently adapting VLMs such as
CLIP, to tasks like image classification. However, most existing prompt
learning methods learn text tokens that are unexplainable, which cannot
satisfy the stringent interpretability requirements of Explainable Artifi-
cial Intelligence (XAI) in high-stakes scenarios like healthcare. To address
this issue, we propose a novel explainable prompt learning framework
that leverages medical knowledge by aligning the semantics of images,
learnable prompts, and clinical concept-driven prompts at multiple gran-
ularities. Moreover, our framework addresses the lack of valuable concept
annotations by eliciting knowledge from large language models and offers
both visual and textual explanations for the prompts. Extensive exper-
iments and explainability analyses conducted on various datasets, with
and without concept labels, demonstrate that our method simultaneously
achieves superior diagnostic performance, flexibility, and interpretability,
shedding light on the effectiveness of foundation models in facilitating
XAI. The code is available at https://github.com/Tommy-Bie/XCoOp.
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1 Introduction

In the era of foundation models (FMs), large-scale vision-language pre-trained
models (VLMs) such as CLIP [24], BLIP [18], Flamingo [2], ALIGN [13], CoCa
[29] have underscored their potential in representation learning, excelling at
vision and language understanding. However, the massive sizes and expensive
training costs have prompted studies to explore ways to efficiently adapt the
knowledge of pre-trained VLMs to downstream tasks. Recently, prompt learning
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from the field of natural language processing has been introduced to the vision
domain [31, 30], achieving great success in adapting large-scale VLMs to down-
stream tasks like image classification and segmentation [21, 19]. These methods
fix the parameters of the models and train the learnable tokens that serve as
the input of the text encoder (i.e., context optimization), significantly reducing
the cost of utilizing foundation models. Nevertheless, existing prompt learning
methods result in unexplainable learned tokens. This lack of interpretability pre-
vents further application of prompt learning from being applied to high-stakes
domains with rigorous demands of trustworthiness, such as healthcare [20, 27,
22, 6]. Specifically, the models applied to the healthcare domain should not only
perform well but also need to be understandable and trustworthy to practition-
ers, necessitating research into Explainable Artificial Intelligence (XAI). Several
prior studies have introduced knowledge to prompt learning [28, 4]. For instance,
Yao et al. [28] adopt human knowledge (a photo of a [class name]) as hard
prompts to guide the learning of soft prompts at the global level. However, the
insufficient knowledge and inadequate guidance still lead to non-interpretable
prompt learning. To address the explainability challenge of current methods, we
propose XCoOp, a novel eXplainable prompt learning framework for medical
image analysis via concept-guided Context Optimization, which leverages med-
ical knowledge by aligning the semantics of the images, learnable prompts, and
clinical concept-driven prompts at multiple granularities, making each token of
soft prompts more informative and explainable guided by clinical concepts of
corresponding diseases. Furthermore, our framework addresses the lack of valu-
able concept annotations by eliciting knowledge from large language models and
offers both visual and textual explanations for learned prompts.

We summarize our main contributions as follows: (i) We propose XCoOp, a
novel explainable prompt learning framework that leverages concept-based med-
ical knowledge at multiple granularities to make the prompts more explainable.
To the best of our knowledge, this is the first work to explore addressing the lack
of interpretability of prompt learning methods in healthcare. (ii) We demonstrate
that our method can be flexibly applied to various datasets with or without con-
cept annotations, alleviating the requirement of human labor by eliciting medical
knowledge from LLMs. (iii) Extensive experiments and explainability analyses
show that our method simultaneously achieves promising performance and in-
terpretability, highlighting the effectiveness of foundation model-enhanced XAI.

2 Method

Fig. 1 presents the overall architecture of our explainable prompt learning frame-
work for computer-aided diagnosis. Specifically, we initialize the soft prompts
with “a photo of a [disease name]”, and the clinical prompts are created based
on the medical concepts (Section 2.1). The text features of the prompts are ex-
tracted using a pre-trained text encoder, and a multi-granularity prompt align-
ment module is proposed to align the semantics of the soft prompts and the
clinical prompts (Section 2.2). The final disease diagnosis is performed by mea-
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Fig. 1. The overall pipeline of XCoOp. The key insight of XCoOp is enhancing the
informativeness and explainability of the soft prompts under the guidance of concept-
based medical knowledge at multiple granularities, achieving FM-enhanced XAI.

suring the similarity between the text features of soft prompts and the image
features at both global and local levels (Section 2.3).

2.1 Clinical Concept-Driven Prompt Design

To introduce medical knowledge into the prompt learning process, we first de-
sign disease-specific prompts using clinical concepts. Fig. 1 shows the steps of
creating clinical prompts in our framework. Specifically, for medical datasets
with concept annotations (e.g., Derm7pt [15], SkinCon [7]), we can easily create
clinical prompts based on the labels annotated by medical experts. An example
clinical prompt for melanoma in a dermoscopic image is a photo of melanoma,
with irregular pigment network, dots and globules, blue-whitish veil, and vascu-
lar structures. For the datasets lacking explicit concept annotations, we elicit
medical knowledge from a large language model such as GPT4 [1] and create
the corresponding clinical prompts. A sample query used to prompt the LLM
is “What are the most useful visual concepts to distinguish [disease name] in a
{dermoscopic image, chest X-ray, etc.}?”.

2.2 Soft-Hard Prompt Alignment

To enhance the informativeness and explainability of the soft prompts by incor-
porating clinical semantics, we introduce a soft-hard prompt alignment module
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that aligns prompts at both the prompt level and token level. Prompt-level align-
ment facilitates the model to learn correspondences between soft prompts and
clinical (hard) prompts from a global disease perspective, exploiting the intrinsic
information captured by the pre-trained text encoder. The token-level alignment
focuses on a more fine-grained local level. Since each token embedding of the clin-
ical prompts is obtained by tokenizing the original concept-based prompts, the
alignment enforces the soft prompts to be close to the clinical prompts in the
embedding space, aiming to make each token of soft prompts more informative
and explainable guiding by clinical concepts of corresponding diseases, hence en-
hancing the effectiveness and interpretability of the prompt learning framework.

Token-level Alignment. Given the token embeddings of soft prompts V ∈
RD×C×dim and clinical prompts Q ∈ RD×C×dim for different classes, we first
align their embeddings at the token level via contrastive learning, where D,C, dim
represent the number of classes, the context length, and dimension of embedding,
respectively. A probability distribution over the class labels is given by:

P (yd|Vd) =
exp(cos(Qd, Vd)/τ)∑D
k=1 exp(cos(Qk, Vd)/τ)

, (1)

where yd is the binary label of class d, cos(·, ·) is the cosine similarity, and τ is
a temperature parameter. The token-level alignment objective LT is optimized
by minimizing the cross-entropy loss:

LT = −
D∑

k=1

yklogP (yk|Vd). (2)

Prompt-level Alignment. Given the pre-trained text encoder g(·), we align
the text features of soft prompts and clinical prompts at the global prompt level
by minimizing the following objective function:

LP =

D∑
d=1

CE(
exp(cos(g(Qd), g(Vd)))/τ)∑D
k=1 exp(cos(g(Qk), g(Vd))/τ)

, yd), (3)

where LP represents the prompt-level alignment loss, CE(·) denotes the cross-
entropy loss, g(V ) and g(Q) ∈ RD×dim denote the output text features of soft
prompts V and clinical prompts Q, respectively. The overall objective of the
soft-hard prompt alignment module LPPA is the average of LT and LP .

2.3 Global-Local Image-Prompt Alignment

Medical diagnosis typically hinges on various clinical symptoms observable within
specific, localized regions in an image. Given that different clinical concepts
may correspond to distinct sub-regions of a medical image, we employ a global-
local image-prompt alignment module to align the medical images and clinical
concept-driven prompts at multiple levels. Specifically, as illustrated in Fig. 1,
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given an image x and the pre-trained image encoder of CLIP [24], we obtain the
global visual feature p and a set of local features F = {f1, f2, ..., fM}, where M is
the number of local (patch) features. The final prediction probability is computed
by the matching scores of both global and local features, and the alignment can
be optimized using cross-entropy loss which estimates the discrepancy between
the predicted diagnosis results and the ground truth:

LIPA = CE[cos(p, g(Vd)) + λ
1

M
(

M∑
m=1

cos(fm, g(Vd))), yd], (4)

where LIPA represents the image-prompt alignment loss, λ is the weight of the
prediction of local features. The overall training objective is represented as L =
LPPA+λ′LIPA, where λ′ is a loss-balancing factor. The global-local image-prompt
alignment module encourages the model to mimic the process wherein medical
experts utilize both global and local information to diagnose disease.

3 Experiments

3.1 Experimental Setup

Datasets: Derm7pt [15] is a dermoscopic image dataset contains 1011 images
with clinical concepts for melanoma skin lesions in dermatology. SkinCon [7]
is a skin disease dataset densely annotated by experts for fine-grained model
debugging and analysis. The concepts of Derm7pt and the F17k part of SkinCon
are used to design clinical prompts for these two datasets. Pneumonia [16] is
a public dataset for classifying pneumonia cases from normal ones, with 1583
normal and 4273 pneumonia images. IU X-Ray [8] is a chest X-ray dataset
with 3,955 radiology reports, corresponding to 7,470 frontal and lateral images.
We filter out the lateral x-ray, leaving only frontal images.
Implementation Details: Our framework adopted the pre-trained visual (ViT-
B/16) and text encoder of CLIP [24]. We adopted SGD [26] optimizer with
learning rate of 0.032. We used warm-up and cosine anneal as training strategies.
All methods implemented in this paper adopted random crop and random flip
for data augmentation. Grid search was used to select hyperparameters, we set
τ = 0.9, λ = 0.1. All experiments were conducted on an RTX 3090 GPU.

3.2 Experimental Results

In order to comprehensively demonstrate the competitive performance of our
method in disease diagnosis, we commence by comparing with other state-of-
the-art prompt learning methods on four datasets. Subsequently, we undertake
intensive ablation experiments to assess the effectiveness of our method. Finally,
we evaluate the explainability of our framework using multiple XAI metrics.
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Table 1. Quantitative comparison on disease diagnosis with the state-of-the-art
prompt learning methods. The performance is reported as meanstd of three random
runs. Our method is highlighted in light cyan, and the best results are shown in bold.

METHOD
Derm7pt SkinCon Pneumonia IU X-Ray

AUC ACC AUC ACC AUC ACC AUC ACC

CLIP [24] 50.00 69.11 39.68 70.29 50.00 62.52 47.90 13.21

CoOp [31] 71.760.1 75.190.4 77.520.4 75.910.7 84.080.6 85.880.6 78.451.2 71.930.7
CoCoOp [30] 70.400.4 77.040.7 78.020.5 76.190.8 85.960.4 86.060.8 76.001.6 70.630.5
KgCoOp [28] 69.672.7 73.841.4 75.330.3 76.950.5 80.950.3 82.640.3 75.611.2 70.741.2

LASP [4] 75.080.6 76.201.6 78.310.3 77.330.8 91.310.1 92.410.1 83.690.3 76.460.7

XCoOp 78.430.6 78.821.0 81.120.3 78.570.6 92.850.3 93.800.3 84.910.6 78.440.9

Diagnosis Results. In Table 1, we report the disease diagnosis comparison re-
sults of our method using AUROC and Accuracy on four medical image datasets.
We include the CLIP baseline [24] without any tuning (the first row), two CoOp-
based methods (CoOp [31] and CoCoOp [30]), and two knowledge-guided prompt
learning methods (KgCoOp [28] and LASP [4]). Our method outperforms other
state-of-the-art prompt learning methods with a significant margin, especially
achieving 1.2% ∼ 3.4% AUC and 1.2% ∼ 2.0% accuracy improvement com-
pared to the second-best results on all considered datasets, which demonstrates
that the full utilization of medical knowledge and the global-local correlations
between images and prompts effectively encourages the soft prompts to learn
clinical semantics, thus benefiting the performance of our model.

Ablation Study. We conduct various ablation studies on SkinCon to investi-
gate the influence of different modules and settings. In Table 2, we assess the
effectiveness of each module in our proposed framework. Specifically, we show
that our method can benefit from all the components, including the clinical

Table 2. Ablation study of
XCoOp on disease diagnosis
(AUC [%]). CCP, IPA, and PPA
represent the clinical concept-
driven prompts, image-prompt
alignment, and soft-hard prompt
alignment modules, respectively.

Method AUC
Baseline (LASP [4]) 78.310.3

CCP 79.930.4

CCP + IPA 80.460.7

CCP + IPA + PPA 81.120.3
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Fig. 2. Ablation study on the number of training
epochs of XCoOp with different vision backbones.
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Fig. 3. Illustration of our model’s faithfulness using knowledge intervention. (a) Clar-
ification of prompt examples based on different knowledge and intervention. (b) The
results of concept-based knowledge (Kg) intervention on Derm7pt, where x-axis repre-
sents different kinds of prompts and y-axis represents the AUC [%], respectively.

concept-driven prompts, the soft-hard prompt alignment, and the global-local
image-prompt alignment. The last configuration of Table 2 demonstrates that
our method achieves the best overall performance with all designed components.
To explore the influence of different numbers of training epochs and vision back-
bones, we conduct an ablation study and report the AUC in Fig. 2. The results
show that our method can converge quickly with different vision backbones (e.g.,
ViT [9], ResNet [11]), which demonstrates the high efficiency of our method.

3.3 Analysis of Explainability

In order to evaluate the explainability of our proposed method, we analyze our
framework using multiple crucial XAI metrics in this section. Specifically, in-
spired by previous works [10, 25, 12, 3, 14], we evaluate our framework from the
perspectives of faithfulness, understandability and plausibility.

Faithfulness. Faithfulness is defined as the degree to which the explanation
reflects the model decision process and requires the explanation to be faithful to
the designed model mechanism [10, 17, 25]. In this paper, we evaluate faithfulness
by intervening the input clinical concept-driven prompts. As shown in Fig. 3,
we use five kinds of prompt settings, including without knowledge, with random
knowledge (i.e., random words as clinical prompts), with general knowledge (i.e.,
knowledge without specific clinical concepts), with clinical-concept-based knowl-
edge and the intervened knowledge. Specifically, we adopt Derm7pt dataset as an
example, as shown in Fig. 3(a), where intervention means modifying some of the
concepts in the original clinical prompts and obtaining a new prompt. Fig. 3(b)
shows that using only random knowledge, general knowledge, or knowledge after
intervention as prompts may lead to performance degradation, which demon-
strates that the clinical knowledge faithfully explains the model’s decisions.
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Table 3. Quantitative comparison on prompt interpretation by measuring distances
between the soft prompts and the hand-crafted clinical prompts (i.e., textual explana-
tions). The results are reported as the average distances of different categories. Our
method is highlighted in light cyan, and the best results are shown in bold.

Method Derm7pt SkinCon Pneumonia IU X-ray Average ↓
KgCoOp [28] 2.293 1.475 1.727 2.433 1.982

LASP [4] 2.936 3.867 2.270 2.972 3.011
XCoOp 1.161 1.139 0.987 1.127 1.104

(a) Image-prompt similarity visualization. (b) t-SNE.

Fig. 4. Visual explanations. (a) Visualization examples of the similarity between the
images and soft prompts. (b) The t-SNE visualization of tokens of different soft prompts
of SkinCon (top) and IU X-ray (bottom) datasets. Different colors represent different
categories of prompts, and the number of context tokens is 4.

Understandability & Plausibility. Understandability requires explanations
to be easily understandable by users without requiring technical knowledge [14]
while plausibility refers to given domain knowledge, how believable or likely
the explanation seems [10, 5]. Our framework achieves understandability and
plausibility by offering both textual and visual explanations. Specifically, we
interpret the learnable prompts by measuring the distance between the soft
prompts and the hand-crafted clinical prompts. As shown in Table 3, we compare
the average distances with two knowledge-guided prompt learning methods [28,
4]. Our method outperforms the other methods and achieves the least distance
between the learnable prompts and the clinical prompts. For visual explanation,
our framework provides the similarity visualization between the medical images
and the learnable prompts, as shown in Fig. 4(a), where we can observe that the
model focuses more on discriminative concept regions within images guided by
our learned prompts. Fig. 4(b) presents the t-SNE visualization [23] of tokens
of different soft prompts and shows that the token embeddings cluster well,
demonstrating that tokens in each prompt meticulously learn the discriminative
clinical semantics of the corresponding disease category. The explanations offered
by our framework enhance human comprehension of the model’s decision-making
process by elucidating the utilized knowledge and the specific regions of focus,
potentially aiding medical experts in utilizing AI models for disease diagnosis.
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4 Conclusion

In this paper, we propose XCoOp, an explainable prompt learning framework
for computer-aided diagnosis, which utilizes medical knowledge by aligning the
semantics of images, learnable prompts, and clinical concept-driven prompts at
multiple granularities. By adopting the concept-based knowledge eliciting from
foundation models to guide the soft prompt at both the token embedding level
and prompt level, our method outperforms other prompt learning methods while
preserving inherent interpretability with both visual and textual explanations.
Extensive experiments and explainability analyses conducted on various datasets
demonstrate that our method simultaneously achieves promising performance
and interpretability, highlighting the effectiveness of FM-enhanced XAI.
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