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Abstract. Accurate brain tissue segmentation is a vital prerequisite for
charting infant brain development and for diagnosing early brain disor-
ders. However, due to inherently ongoing myelination and maturation,
the intensity distributions of gray matter (GM) and white matter (WM)
on T1-weighted (T1w) data undergo substantial variations in intensity
from neonatal to 24 months. Especially at the ages around 6 months,
the intensity distributions of GM and WM are highly overlapped. These
physiological phenomena pose great challenges for automatic infant brain
tissue segmentation, even for expert radiologists. To address these is-
sues, in this study, we present a unified infant brain tissue segmenta-
tion (UinTSeg) framework to accurately segment brain tissues of infants
aged 0-24 months using a single model. UinTSeg comprises two stages:
1) boundary extraction and 2) tissue segmentation. In the first stage,
to alleviate the difficulty of tissue segmentation caused by variations in
intensity, we extract the intensity-invariant tissue boundaries from T1w
data driven by edge maps extracted from the Sobel filter. In the second
stage, the Sobel edge maps and extracted boundaries of GM, WM, and
cerebrospinal fluid (CSF) are utilized as intensity-invariant anatomy in-
formation to ensure unified and accurate tissue segmentation in infants
age period of 0-24 months. Both stages are built upon an attention-
based surrounding-aware segmentation network (ASNet), which exploits
the contextual information from multi-scale patches to improve the seg-
mentation performance. Extensive experiments on the baby connectome
project dataset demonstrate the superiority of our proposed framework
over five state-of-the-art methods.

Keywords: Infant brain tissue segmentation · Boundary delineation ·
Multi-scale segmentation.
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Fig. 1. Varying tissue intensity distributions along ongoing brain development.

1 Introduction

Infant brain grows rapidly during its first two years of life, underlying synapto-
genesis and myelination after the stabilization of brain anatomy [24,6,8,21]. Ac-
curate segmentation of brain tissues (i.e., GM, WM, and CSF) from structural
MRI (sMRI) data enables reliable charting of this ongoing and dramatic develop-
ment period, which sheds light on understanding early learning and pathological
mechanisms [14,27,16,28,13,12]. Challenges, due to the ongoing and dramatic
myelination and maturation processes, manifest in GM and WM variations in
intensity from sMRI data, which hinders accurate brain tissue segmentation
of infants, although brain anatomy has been stabilized already. As depicted in
Fig. 1, the rapid brain development is demonstrated by the varying tissue inten-
sity distributions of three roughly-divided phases [3], i.e., 1) the infantile phase
(≤5 months), 2) the isointense phase (6−9 months), and 3) the adult-like phase
(10−24 months).

The variations in intensity incur severe challenges for both categories of
segmentation methods: 1) registration-based and 2) learning-based, in the lit-
eratures. Registration-based methods typically warp tissue maps from a prede-
fined brain atlas to individual subjects [20,25,29,11], indirectly obtaining the
segmented tissues. However, accurate registration could hardly be guaranteed
due to substantial variations in size and in intensity contrast between GM and
WM of the infant brain data (0-24 months). This challenge is particularly pro-
nounced for segmenting sMRI data in the isointense phase, where registration
struggles with unclear tissue boundaries, leading to notable registration and
segmentation errors. By contrast, recent advances in learning-based algorithms
improve the segmentation accuracy by individualizing infant brain tissue seg-
mentation [26,17,1,27,22]. They have to train a range of age-specific models to
segment infant brain tissues at each age period [27]. Also, targeting to improve
the segmentation accuracy in the isointense phase, there are specific efforts in
segmenting isointense phase infant brain tissue by utilizing adult-like phase data
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with clearer tissue boundaries [2,14]. However, these methods are predominantly
tailored for the age periods, and it has to segment brain tissues across 0-24
months with a list of different models. Considering the individual heterogeneity,
those isolated models may lose fidelity and cause longitudinal inconsistency in
segmenting the tissues.

In this study, to address the aforementioned challenges, we propose a unified
infant brain tissue segmentation framework, UinTSeg, to achieve longitudinally
consistent and accurate tissue segmentation for infants aged from neonatal to
24 months in an integrated framework. Our proposed UinTSeg consists of two
stages: 1) boundary extraction and 2) tissue segmentation, as depicted in Fig. 2.
In the first stage, a boundary extraction network utilizes the coarse edge maps
of tissues obtained by Sobel filter [10] to extract intensity-invariant boundaries
of GM, WM, and CSF, respectively, in delineating brain anatomy. In the second
stage, both Sobel edge maps and extracted boundaries serve as intensity-invariant
anatomy information to mitigate variations in intensity in infants age period of
0-24 months. Considering the most difficult case, isointense phase data, UinTSeg
additionally capitalizes a synthesis model from our previous work [14] to trans-
form isointense phase T1w data, characterized by unclear tissue contrast, into
an adult-like phase T1w data with clearer tissue edges before extracting Sobel
edge maps. It is worth noting that the networks in both stages are built upon
an attention-based surrounding-aware segmentation network (ASNet) to lever-
age comprehensive contextual information, which is proven effective in enhanc-
ing segmentation performance. More specifically, ASNet simultaneously segment
two scales of patches, namely local patches with a regular receptive field and
surrounding patches with a larger receptive field. Features extracted from the
surrounding patches, rich in contextual information, are integrated into the local
patch segmentation branch using an attention-based cross-branch fusion (CBF)
module to enhance tissue segmentation performance. Extensive experiments are
conducted on the baby connectome project (BCP) [7] dataset, and the results
demonstrate the superiority of our proposed UinTSeg framework.

2 Method

Our proposed UinTSeg framework comprises two stages: 1) boundary extraction
and 2) tissue segmentation (Sec. 2.1). The networks employed in both stages
share the same network architecture, ASNet, without sharing the weights. ASNet
is elaborately devised to exploit abundant contextual information from multi-
scale patches (Sec. 2.2). In Sec. 2.3, we introduce the implementation details of
UinTSeg.

2.1 Anatomy-guided Tissue Segmentation

In the two stages, UinTSeg first delineates tissue boundaries and then capital-
izes the extracted boundaries to resolve the segmentation challenge of varia-
tions in intensity. In the first stage, as shown in Fig. 2 (a), UinTSeg employs

https://link.springer.com/chapter/10.1007/978-3-031-43901-8_6
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Fig. 2. Illustration of our proposed unified infant brain tissue segmentation (UinTSeg)
framework, with (a) Boundary extraction, (b) Tissue segmentation, and (c) Cross-
branch fusion (CBF) modules. (Boundaries extracted from GTLP and GTSP are omitted
for simplicity)

the Sobel filter [10] to obtain edge maps from T1w data. The Sobel edge maps,
serving as coarse intensity-invariant anatomical information, are concatenated
with the corresponding T1w data as the input of the boundary extraction net-
work in stage 1 to guide the boundary extraction network to accurately extract
tissue boundaries of GM, WM, and CSF in delineating more accurate intensity-
invariant information of the brain anatomy. In the second stage, as shown in
Fig. 2 (b), beyond Sobel edge maps and T1w data, boundaries extracted in stage 1
are concatenated additionally. Under the guidance of this extracted intensity-
invariant anatomy information, the tissue segmentation network is tailored to
segment GM, WM, and CSF, respectively.

UinTSeg, by this, mitigates the adverse effects of variations in intensity along
the ongoing development period and tactically emphasizes tissue boundaries
for the segmentation network. It is worth noting here again that the networks
employed in both stages share the same network architecture in ASNet (detailed
in Sec. 2.2), however, without sharing the weights.

2.2 Attention-based Surrounding-aware Segmentation Network

ASNet is designed as the core segmentation network in both boundary extrac-
tion and tissue segmentation stages. The input of ASNet in stage 1 is the con-
catenated T1w data and its corresponding Sobel edge maps; while in stage 2,
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the extracted boundaries of GM, WM, and CSF are additionally concatenated.
Besides the intensity-invariant anatomy information, ASNet enables extracting
multi-scale features by employing two distinct scales of patches. As shown in
Fig. 2, ASNet comprises two parallel segmentation branches, and each branch
deals with a specific patch scale, i.e., local patch (LP) and surrounding patch
(SP). The input of ASNet is cropped into two-scale patches at the same cen-
ter point location, denoted as local patch ILP and surrounding path ISP . The
surrounding patch ISP contains more contextual information within an enlarged
region. These two patches are passed to the local patch branch and surrounding
patch branch, respectively. Both branches are built on the 3D UNet [19] archi-
tecture, comprising the four-stage encoder and decoder with skip connections
between the corresponding encoder and decoder layers.

Moreover, to integrate features from two segmentation branches in ASNet,
we propose a cross-branch fusion (CBF) module, as shown in Fig. 2 (c) [4]. The
CBF module first crops a central part of features Fm

SP from the surrounding
patch branch at the m-th layer, based on the original size ratio between local
and surrounding patches (orange and yellow box on Input in Fig. 2 (a) & (b)).
The cropped features are then upsampled as F̂m

SP, which matches the size of
features Fm

LP from the local patch branch at m-th layer. Then, the information
fusion module (brown dashed box in Fig. 2 (c)), incorporated with both spatial-
and channel-attention layers, is employed to fuse the features of the two branches
layer-by-layer (denoted as F̂m

LP). By this, the CBF module merges the contex-
tual features obtained from the surrounding patch branch with the local one,
complementing the local patch features with a more comprehensive anatomy
representation. During the training of the two stages, we utilize a hybrid loss
functions, blending Dice loss LDice and cross-entropy loss LCE, which have been
widely validated for medical image segmentation tasks [15].

2.3 Implementation Details

Our proposed UinTSeg is trained in two separate stages. We first train the
edge extraction network, obtaining the tissue boundaries as input for the tissue
segmentation network. The entire framework is implemented on PyTorch 1.7.1
and trained on a workstation equipped with an NVIDIA V100s GPU. We employ
the Adam optimizer, and the initial learning rate is set as 0.001 with a 10% decay
every 50 epochs. The patch sizes of the local and surrounding patches are set
as 128× 128× 128 and 160× 160× 160, respectively. Our code and pre-trained
model can be found in this link.

3 Experiments

3.1 Dataset and Evaluation Metrics

We collected T1w infant brain data from the BCP dataset [7] to train and evalu-
ate our framework. This dataset comprises 672 T1w data scanned from 264 sub-
jects, with an age range from 2 weeks to 24 months. All the data were acquired

https://github.com/SaberPRC/UinTSeg
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Table 1. Quantitative comparison with 4 SOTA methods for ages 0-24 months.

Method
Dice (%) ↑ HD (mm) ↓ ASD×10 (mm) ↓

GM WM CSF GM WM CSF GM WM CSF

InfantFS 70.81±9.43 71.57±11.18 55.84±6.26 14.95±2.04 22.89±4.54 13.83±1.82 9.12±6.73 13.55±8.67 10.87±6.27

3D UNet 93.83±2.62 94.15±2.50 93.15±1.86 6.95±1.90 7.29±2.45 9.96±2.30 1.01±0.26 1.16±0.51 0.78±0.27

nnUNet 95.20±2.22 95.47±1.97 94.58±1.88 6.77±1.64 7.27±2.37 9.76±2.17 0.81±0.25 0.91±0.41 0.63±0.38

SwinUNetR 95.04±2.10 95.43±1.88 94.50±1.27 6.60±2.01 7.16±2.57 9.34±2.28 0.81±0.19 0.91±0.38 0.60±0.19

UinTSeg 95.84±2.07 95.98±1.87 95.70±1.51 6.57±1.95 6.96±2.44 8.88±2.21 0.68±0.22 0.80±0.37 0.48±0.23

Table 2. Quantitative comparison with 5 SOTA methods for the isointense phase.

Method
Dice (%) ↑ HD (mm) ↓ ASD×10 (mm) ↓

GM WM CSF GM WM CSF GM WM CSF

InfantFS 65.61±2.93 60.51±2.61 53.50±2.73 15.41±1.36 21.35±0.89 14.11±1.28 11.2±3.16 23.00±2.02 11.5±0.63

3D UNet 91.31±0.96 91.88±0.74 91.85±1.25 4.94±1.05 6.39±1.35 8.78±2.17 1.14±0.11 1.59±0.18 0.95±0.13

nnUNet 93.47±0.97 94.21±0.88 93.72±1.08 5.37±1.17 6.13±1.19 9.44±2.33 0.87±0.12 1.14±0.18 0.71±0.11

SwinUNetR 93.12±0.93 93.85±0.78 93.81±1.04 4.32±1.03 6.58±1.08 8.39±2.49 0.88±0.12 1.21±0.18 0.69±0.10

TMSN 94.33±1.01 95.11±0.86 95.35±0.92 6.08±1.26 6.54±1.04 6.68±0.97 0.73±0.13 1.03±0.19 0.52±0.11

UinTSeg 94.66±0.64 95.24±0.56 95.21±0.67 4.31±0.54 6.01±1.03 6.95±1.73 0.69±0.08 0.94±0.12 0.53±0.06

from diverse sites, using various scanners, and demographics, thereby enhanc-
ing the robustness of our UinTSeg framework. The ground-truth (GT) labels
of GM, WM, and CSF were manually annotated by experienced radiologists.
We first normalized the intensity of each T1w image to standard distribution
using z-score normalization [18]. Notably, we only kept the top 99.99% of the
intensity values of each image to mitigate the influence of outlier values. Then
the data was randomly divided into three distinct subsets: i) 70% for training,
ii) 10% for validation, and iii) 20% for testing. The data partitioning process is
carried out independently for each subject to eliminate data leakage caused by
the longitudinal scanning data of the same subject. The segmentation perfor-
mance is comprehensively evaluated through three metrics: i) Dice score (Dice),
ii) Hausdorff Distance (HD), and iii) Average Surface Distance (ASD) [23].

3.2 Comparison with SOTA Methods

To demonstrate the superiority of our proposed UinTSeg, we conducted a com-
prehensive comparison with five SOTA methods, including: 1) Infant FreeSurfer
(InfantFS) [29], which utilizes a multi-atlas fusion strategy for infant tissue seg-
mentation; 2) 3D UNet [19], a baseline single-scale segmentation network; 3)
nnUNet [9], regarded as one of the most stable and general medical image seg-
mentation methods; 4) SwinUNetR [5], an advanced Swin transformer-based
segmentation network for 3D medical image segmentation; and 5) TMSN [14],
an advanced learning-based isointense infant brain tissue segmentation network.
To ensure a fair comparison, we utilized the same data splitting and training
strategies as employed in UinTSeg for all the SOTA methods.
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Image Edge Maps GT InfantFS 3D UNet nnUNet SwinUNetR UinTSeg
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Fig. 3. Qualitative comparison of segmentation results using SOTA methods in three
cases, including segmented images, corresponding close-up views, and error maps com-
pared to GT. (yellow-colored voxels denote the segmentation errors)

Table 1 demonstrates quantitative evaluation for all the methods for infants
aged 0-24 months. It is shown that our proposed framework obtains the highest
mean Dice score, as well as the lowest HD and ASD, compared to the four SOTA
methods. Besides, Table 2 also presents the evaluation results at the isointense
phase. We can find that UinTSeg consistently shows superior performance over
the five SOTA methods and even achieves better performance as the method
TMSN [14], which is specifically tailored for the isointense phase.

To qualitatively evaluate our proposed framework, we carried out a visual
comparison for three typical infant cases at three distinct ages, i.e., 2 weeks, 6
months, and 24 months. As shown in Fig. 3, we can find that the predicted tissue
maps obtained by our proposed UinTSeg (last column of the right panel) are
close to the GT (first column of the right panel), especially in the subcortical re-
gions, indicating that our proposed UinTSeg achieves the best visual perception
among all the four SOTA methods, which is in line with quantitative evaluation.
We can obtain the same conclusion also from the error maps (even rows in the
middle panel) computed by absolute subtraction of the predicted tissue maps
from GT ones. The performance improvement mainly arises from the intensity-
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Table 3. Ablation study of our proposed each component in UinTSeg.

Method
Sobel

Filtering

Boundary

Extraction

Dice (%) ↑ HD (mm) ↓ ASD×10 (mm) ↓

CSF GM WM CSF GM WM CSF GM WM

SegNet 93.83±2.62 94.15±2.50 93.15±1.86 6.95±1.90 7.29±2.45 9.96±2.30 1.01±0.26 1.16±0.51 0.78±0.27

ASNet 94.61±2.24 94.59±2.17 94.55±1.43 7.14±2.06 7.13±2.53 9.61±2.22 0.91±0.23 7.13±2.52 0.62±0.20

ASNet ✓ 95.11±2.25 95.39±1.97 94.98±1.65 7.09±2.28 6.76±2.48 9.12±2.13 0.79±0.23 0.92±0.40 0.56±0.28

UinTSeg ✓ ✓ 95.84±2.07 95.98±1.87 95.70±1.51 6.57±1.95 6.96±2.44 8.88±2.21 0.68±0.22 0.80±0.37 0.48±0.23

invariant anatomy guidance of the extracted tissue boundaries as well as the
multi-scale tissue representations. The quantitative and qualitative evaluations
consistently reveal the effectiveness of our proposed UinTSeg.

3.3 Ablation Studies

To validate the module effectiveness of UinTSeg, we conducted ablation studies
(Table 3) by extending the baseline single-scale segmentation network SegNet
with our proposed components, including the attention-based surrounding-aware
segmentation Network (ASNet), Sobel filtering, and the boundary extraction
network. As listed in Table 3, SegNet denotes the basic single-scale segmentation
network using solely local patches; ASNet denotes the two branches segmentation
network; UinTSeg denotes the complete segmentation framework that unifies
ASNet, Sobel filtering, and boundary extraction.
Effectiveness of ASNet . As presented in Table 3, a notable improvement is
observed when comparing ASNet (second row in Table 3) with the single-scale
SegNet (first row in Table 3). It is shown that ASNet elevates the Dice score
across three tissues from 93.71% to 94.58%, and consistent improvement can be
found from HD and ASD, indicating that fused patch features with an enlarged
receptive field bring necessary contextual information to guide segmentation in
local.
Effectiveness of anatomy guidance. Compared to ASNet (second row), our
proposed UinTSeg exploits not only the original T1w data, but also the Sobel
edge maps and extracted boundaries of GM, WM, and CSF. As reported in the
last rows of Table 3, we can find that incorporating Sobel edge maps as additional
anatomy information into the input enhances Dice (third row of Table 3) by
0.58% compared to solely utilizing T1w data as input (second row of Table 3).
Additionally, a notable improvement in segmenting GM, WM, and CSF tissues
is observed across all the evaluated metrics by incorporating both intensity-
invariant Sobel edge maps and extracted boundaries into the input (the last row
of Table 3). In summary, our results highlight the effectiveness of integrating
intensity-invariant anatomy information for guiding infant brain segmentation
throughout this ongoing and dramatic development period.
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4 Conclusion

In this study, we present a unified framework, UinTSeg, for brain tissue segmen-
tation of infants aged from neonatal to 24 months based on T1w data. Unlike
previous studies that are dedicated to training a range of isolated models for
specific infant developmental periods, our framework enables precise tissue seg-
mentation across the ongoing and dramatic development period using a single
unified model. UinTSeg accommodates severe variations in intensity by leverag-
ing intensity-invariant information of tissue boundaries. Extensive experiments
have demonstrated that our proposed UinTSeg significantly outperforms five
SOTA methods both quantitatively and qualitatively, particularly for the seg-
mentation of isointense infant brain tissues. It underscores the effectiveness of
integrating intensity-invariant anatomy information as well as contextual infor-
mation in infant brain tissue segmentation, demonstrating potential in investi-
gating early brain development and neurodevelopmental disorders.
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