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Abstract. Automatic brain tumor segmentation using multimodal MRI
images is a critical task in medical imaging. A complete set of multimodal
MRI images for a subject offers comprehensive views of brain tumors, and
thus providing ideal tumor segmentation performance. However, acquir-
ing such modality-complete data for every subject is frequently imprac-
tical in clinical practice, which requires a segmentation model to be able
to 1) flexibly leverage both modality-complete and modality-incomplete
data for model training, and 2) prevent significant performance degra-
dation in inference if certain modalities are missing. To meet these two
demands, in this paper, we propose M3FeCon (Missing as Masking:
arbitrary cross-Modal Feature ReConstruction) for incomplete multi-
modal brain tumor segmentation, which can learn approximate modality-
complete feature representations from modality-incomplete data. Specifi-
cally, we treat missing modalities also as masked modalities, and employ
a strategy similar to Masked Autoencoder (MAE) to learn feature-to-
feature reconstruction across arbitrary modality combinations. The re-
constructed features for missing modalities act as supplements to form
approximate modality-complete feature representations. Extensive eval-
uations on the BraTS18 dataset demonstrate that our method achieves
state-of-the-art performance in brain tumor segmentation with incom-
plete modalities, especicall in enhancing tumor with 4.61% improvement
in terms of Dice score.

Keywords: Incomplete Multimodal Segmentaion · Brain Tumor Seg-
mentaion

1 Introduction

Utilizing multiple medical image modalities to jointly enhance diagnostic ac-
curacy is widely adopted in many clinical applications. For instance, in brain
tumor segmentation, multi-modal Magnetic Resonance Imaging (MRI) is used
to obtain comprehensive views of brain tumors. This includes a variety of im-
age modalities such as T1-weighted (T1), contrast-enhanced T1-weighted (T1c),
T2-weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR) images,
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each offering distinct tissue contrasts to help identify different tumor areas in
the brain. However, clinical practice often present scenarios where some image
modalities are unavailable due to various constraints such as scanning cost, time,
and patient condition. These limitations can lead to significant model perfor-
mance degradation when certain image modalities are missing during inference
and also intensify the scarcity of modality-complete training datasets. Conse-
quently, tackling incomplete multimodal learning for brain tumor segmentation
is of great clinical value.

To deal with this problem, a critical challenge is how to learn a modality-
complete feature representation for each subject from modality-incomplete data,
so that the ideal tumor segmentation performance can be achieved. Existing
works can be mainly divided into two classes: (1) feature-fusion based meth-
ods and (2) knowledge distillation based methods. For the feature-fusion based
methods, one of the pioneering work is HeMIS [5] that learns a fused feature
representation for each subject by computing statistics from the available modal-
ities. Following works [1,4,15,14,13,11] propose more advanced fusion strategies.
For instance, RFNet [4] proposes a region-aware fusion strategy to differentiate
the contribution of the available modalities to different regions. MMFormer [14]
uses inter-modal and intra-modal transformer architecture to learn fused fea-
ture representations from the available modalities. However, the fused feature
representation for each subject is not the modality-complete feature representa-
tion, which still lacks the information from the missing modalities. The knowl-
edge distillation based methods [6,12,2,8,9] attempt to learn modality-complete
feature representations by distilling knowledge from modality-complete data to
modality-incomplete data. However, their success relies on a strict precondi-
tion: the modality-complete data for each subject should be provided for train-
ing. M3AE [9] adopts a self-distillation strategy to distill knowledge between
features of different modality combinations, yet the feature representations it
learns are compromised modality-shared representations rather than modality-
complete feature representations.

In this paper, we propose M3FeCon (Missing as Masking: arbitrary cross-
Modal Feature ReConstruction), a novel approach for incomplete multimodal
brain tumor segmentation, which can learn approximate modality-complete fea-
ture representations from modality-incomplete data. Unlike knowledge distil-
lation based methods, which depend on modality-complete data for training,
M3FeCon learns to approximate modality-complete features through cross-modal
feature-to-feature reconstruction. Specifically, we employ a strategy similar to
Masked Autoencoder (MAE) to realize this cross-modal feature-to-feature re-
construction, where we random mask some modalities of each subject and treat
the missing modalities also as the masked modalities, then reconstruct feature
representations of masked modalities from the remaining unmasked ones. The
reconstructed features for missing modalities act as supplements to form the ap-
proximate modality- complete feature representation for each subject. M3FeCon
enables a feature-to-feature translation between arbitrary modality combina-
tions, and thus allows for a flexible utilization of both modality-complete and
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Fig. 1. Our M3FeCon architecture. During training, some modalities of a sub-
ject are missing. The encoders are applied to the remaining available modalities. We
randomly mask some modalities and treat the missing modalities also as the masked
modalities. Then, all modalities are tokenized and processed by a multi-layer trans-
former block to reconstruct the features of the masked ones. After training, the random
mask strategy is discarded and all available modalities are applied to reconstruct the
features of missing modalities, which act as supplements to form approximate modality-
complete feature representations for segmentation.

modality-incomplete data during model training. Our novel contributions are as
follows:

– We propose M3FeCon, an arbitrary cross-modal feature reconstruction model
for incomplete multimodal brain tumor segmentation by treating missing
modalities as masked modalities. As far as we know, it is the first attempt
to learn modality-complete feature representations from the training with
modality-incomplete data.

– Experiment results on BraTS18 dataset demonstrate that M3FeCon achieve
state-of-the-art results in incomplete multimodal brain tumor segmentation,
especially in enhancing tumor with 4.61% Dice score improvement.

2 Method

We denote the input data as X = {X1,X2, . . . ,XM}, representing M modalities
per sample, with Xm ∈ RH×W×D being the image of the m-th modality and
H ×W ×D being the size of the 3D medical images. The presence of modalities
is indicated by a binary vector p = [p1, p2, . . . , pM ], where pm = 1 indicates
the m-th modality is present and pm = 0 indicates it is absent. The training
dataset comprises a collection of tuples {(X (i),p(i),Y(i))}Ni=1, with N denoting
the total number of training samples. Each tuple includes the multimodal inputs
X (i), the modality presence vector p(i), and the corresponding ground truth of
segmentation map Y(i) ∈ {0, 1, . . . , c}H×W×D, where {0, 1, . . . , c} is a set of
pre-defined semantic classes.
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Fig. 1 illustrates the overall architecture of our proposed M3FeCon. Our
framework is based on an encoder-decoder structure. Each modality image un-
dergoes initial encoding to extract high-level features, denoted as Fm = p[m] ·
fm(Xm), where fm is the encoder corresponding to the m-th modality and p[m]
ensures encoding is performed only for available modalities. Following this is
a multi-layer transformer block, which aims to learn feature-to-feature recon-
struction across arbitrary modality combinations through a random modality
masking strategy. The decoder is then fed with a combined features from each
modality, selectively using either the originally encoded or the reconstructed
features based on their availability and the random masking applied during the
current training iteration. Finally, The training process is supervised by both
a reconstruction loss and a segmentation loss, ensuring features generated as
supplements can most effectively enhance segmentation results.

2.1 Arbitrary Cross-modal Feature Reconstruction

Given the initial presence vector p, we apply a random modality masking strat-
egy through binary vector r to selectively mask among the available modali-
ties, while ensuring at least one remains unmasked for each training iteration.
r[m] = 0 indicates that the m-th modality is masked. The final presence state of
each modality in current training iteration is represented by the binary indicator
g[m]: g[m] = p[m] ∧ r[m].

We then transform each unmasked modality feature map Fm into modal-
ity tokens Tm through a flattening and projection process, defined as Tm =
fp(flatten(Fm)), where fp represents a projection function that maps the flat-
tened feature map into a token space of dimension N ×C, where N is length of
the tokens and C is the hidden dimension.

For each modality that is masked or originally missing, we introduce a cor-
responding learnable replacement tokens Tr

m to fill in its position. These re-
placement tokens inform transformer about the specific modality features to re-
construct and can also learn prior knowledge from each modality that can help
to better reconstruct corresponding modality features. The final input sequence
Tin ∈ RMN×C is a concatenation of available modality tokens and learnable
replacement tokens:

Tin = [I1, I2, . . . , IM ], Im =

{
Tm if g[m] = 1

Tr
m if g[m] = 0

for 1 ≤ m ≤ M (1)

Finally, we add positional encoding to Tin and feed it to a multi-layer trans-
former block fr for feature reconstruction Trecon = fr(T

in).

2.2 Training and Inference

Given the output tokens sequence Trecon, we split it to get the reconstructed
tokens of each modality {Trecon

m }Mm=1. Then we use Mean Square Error (MSE)
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to calculate the reconstruction loss, which is only computed for a modality m
if it is both present in the original dataset (p[m] = 1) and has been randomly
masked for the current iteration (r[m] = 0). The reconstruction loss is given by:

Lrecon,m =

{
MSE(T̂m,Trecon

m ), if p[m] = 1 and r[m] = 0,

0 otherwise
(2)

where T̂m is a detached copy of Tm. The overall reconstruction loss is averaged
over all modalities: Lrecon =

∑M
m=1 Lrecon,m.

To perform segmentation, we first unfold the reconstructed modality tokens
to get the corresponding reconstructed feature map Frecon

m ∈ Rh×w×d×C , where
h×w× d is the size of the feature map. The decoder is fed with a concatenated
feature map Fconcat ∈ Rh×w×d×MC along the channel dimension, composed of
either the original or reconstructed features for each modality, depending on
their availability and the masking applied for the current training iteration.
Specifically, for each modality m, the original feature map Fm from the encoder
is used if the modality is available in the input (p[m] = 1) and not masked in the
current iteration (r[m] = 1). Otherwise, the reconstructed feature map Frecon

m is
employed. The final concatenated feature map Fconcat can be represented as:

Fconcat =

M⊕
m=1

{
Fm if p[m] = 1 ∧ r[m] = 1

Frecon
m otherwise

(3)

where
⊕

denotes the concatenation operation along the channel dimension.
Fconcat is then fed to the decoder and produce the segmentation map. The
segmentation loss is calculated as:

Lseg = Dice(fd(Fconcat),Y) + CrossEntropy(fd(Fconcat),Y) (4)

where fd denotes the decoder. The total loss Ltotal is a combination of the
reconstruction loss and the segmentation with α being a hyper-parameter to
adjust the weight of reconstruction loss.

Ltotal = Lseg + α · Lrecon (5)

In general, the segmentation task ensures the reconstructed features con-
tribute positively to segmentation outcomes, meanwhile the reconstruction task
guides feature learning from missing modalities, that can most effectively en-
hance segmentation performance. Given the diversity of modality combinations
throughout the training process, it can be ensured that all types of feature-to-
feature reconstruction process receive comprehensive guidance from both tasks.

During inference, given modality-incomplete data as input, our model re-
constructs the features of missing modalities based on the features of available
modalities. By concatenating the originally encoded and the reconstructed fea-
tures, we form an approximate modality-complete feature representation and
feed it to the decoder to deliver segmentation results.
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Table 1. Comparison of model performance in terms of the Dice score (%) on the
BraTS2018 dataset. The highest scores are highlighted in bold. “•” and “◦” denote the
presence and absence of the modality for testing, respectively.

Modalities Enhancing tumor Tumor Core Whole Tumor
F1 T1 T1c T2 mmF MD M3AE Ours mmF MD M3AE Ours mmF MD M3AE Ours

• ◦ ◦ ◦ 37.98 35.32 34.96 46.59 61.61 63.24 66.02 69.42 86.37 86.68 88.04 89.05
◦ • ◦ ◦ 31.38 32.22 36.54 44.35 56.96 65.83 65.77 65.72 67.92 75.05 73.83 75.24
◦ ◦ • ◦ 71.37 67.49 73.04 75.88 75.93 80.94 82.53 82.31 72.62 77.25 75.16 75.26
◦ ◦ ◦ • 41.92 42.88 46.93 49.32 64.61 67.49 69.14 72.48 81.43 84.67 84.22 85.13
• • ◦ ◦ 41.75 38.41 48.16 48.47 66.47 71.73 70.53 72.82 87.46 85.14 88.49 90.17
• ◦ • ◦ 73.93 72.45 74.08 76.23 78.34 82.28 84.03 84.14 87.61 86.96 88.85 90.35
• ◦ ◦ • 46.47 45.27 40.57 51.12 70.18 72.42 70.59 72.81 87.99 86.42 89.31 90.46
◦ • • ◦ 72.77 68.44 74.58 76.78 79.01 81.97 83.11 82.88 74.75 77.97 76.50 79.16
◦ • ◦ • 43.85 42.68 44.73 50.17 69.89 71.92 71.46 72.01 82.46 85.43 86.34 86.03
◦ ◦ • • 73.13 70.47 74.39 76.55 79.07 83.01 83.85 84.75 83.25 85.82 85.58 86.61
• • • ◦ 74.31 70.86 73.42 76.74 80.22 83.08 83.72 84.81 87.77 84.71 88.07 89.62
• • ◦ • 46.51 45.93 44.15 52.63 71.97 74.69 72.41 75.98 88.08 83.98 89.24 90.24
• ◦ • • 74.53 72.91 74.68 77.64 79.94 83.22 84.25 84.64 88.47 84.57 89.46 90.07
◦ • • • 73.49 70.83 73.37 77.33 80.89 83.65 84.13 84.39 83.08 83.32 85.06 86.79
• • • • 76.36 71.25 74.85 77.81 86.23 83.27 84.24 85.03 89.93 85.64 89.56 90.69

Average 58.65 56.49 59.23 63.84 73.42 76.58 77.05 78.28 83.28 83.57 85.18 86.32

p-value 3.8e-6 7.3e-6 1.9e-5 - 9.5e-6 6.0e-6 1.3e-5 - 1.7e-4 2.5e-5 2.2e-3 -

3 Experiments

Dataset and Implementation Details. The evaluation is conducted on the
BraTS2018 [10] dataset, which includes 285 multimodal MRI scans across four
modalities: T1, T1c, T2, and FLAIR. The dataset focuses on segmenting three
key brain tumor sub-regions: enhancing tumor (ET), tumor core (TC), and whole
tumor (WT), with expert-annotated ground truths provided for each case. We
randomly split the dataset and use 200 cases for training and 85 cases for vali-
dation.

Our method was implemented in PyTorch 2.0 on a NVIDIA GTX 3090 GPU.
The backbone network is a 3D UNet [3] architecture. At the bottleneck of the
network, we incorporated a 4 layer transformer block with hidden dimension of
size 512 to learn feature-to-feature reconstruction. The input size of each image
modality is 128×128×128 voxels and batch size is set to 2. We followed the data
preprocessing and augmentation steps from nnunet [7]. The hyperparamater α
for the reconstruction loss was set to 1. Our model was trained with Adam
optimizer with an initial learning rate of 0.01 for 500 epochs.

Comparisons with the State-of-the-Arts. We compared our model with
several other state-of-the-art methods for incomplete multimodal brain tumor
segmentation, including feature-fusion based method (mmFormer(mmF)[14]) and
knowledge distillation based methods ( ModDrop++(MD) [8], M3AE [9]). For
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a fair comparison, all models listed in Table 1 were trained under the same set-
tings as described in [8], where entire modality-complete datasets are used and
different partial modalities are randomly dropped in each training iteration to
simulate situations with missing modalities. We use Dice score as the evaluation
metric. Table 1 shows the segmentation performance on the three types of tumors
evaluated on all 15 possible cases of modality availability. It can be observed that
our model achieves the highest scores on most of the modality-incomplete cases
across all three types of tumors. On average, our model improves the dice scores
upon previous state-of-the-art methods with 4.61% on enhancing tumor, 1.23%
on tumor core and 1.14% on whole tumor. Our model’s advantage is particu-
larly evident in enhancing tumor, due to the outstanding ability of reconstructing
missing modality information, thus improving segmentation accuracy greatly in
enhancing tumor segmentation when T1c modality is absent. Besides, on the
harder cases with more modalities or important modality (T1c) missing, our
method has even larger improvements. For example, we achieve over 10% gains
with only {Flair} for enhancing tumor, over 3% gains with {Flair} or {T2} for
tumor core. The significant improvements on more challenging tasks and cases
demonstrate our method’s superiority.

It is also worth noting that our model has fewer parameters compared to
ModDrop++, a method that is also designed to learn approximate modality-
complete features. By learning feature-to-feature reconstruction within the net-
work’s bottleneck, our model eliminates the need for an additional cumbersome
teacher branch. Fig. 2 shows the visualization results of our model given various
modality-incomplete data. More visualizations can be found in the supplemen-
tary material.

T2 Image Ground Truth T1c T2 Flair + T1 T1 + T2

Fig. 2. Segmentation results of M3FeCon given various modality combinations.

Training with different missing rates. To evaluate the models’ effectiveness
of including modality-incomplete data with different missing rates for training,
we pre-processed and partioned the training set to simulate diverse complete-
ness levels, by randomly dropping 1-3 modalities from certain samples to cre-
ate predefined sets of modality-incomplete data. Fig. 3 shows the segmentation
performance by training with different ratio of modality-complete to modality-
incomplete data. ModDrop++ is excluded as it cannot utilize modality-incomplete
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Fig. 3. Performance comparison by training with different ratios of modality-complete
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data for training. The results shows that our method consistently outperforms
other methods given different proportion of modality-incomplete data in train-
ing set. This demonstrates that our model can better fully utilize the modality-
incomplete data by learning to approximate modality-complete feature repre-
sentations, thus better improving segmentation results, rather than learning a
compromised shared or fused feature representations. It can also be seen that
as the proportion of modality-complete data in the training set increases, our
model has a growing performance lead over others, primarily attribute to a better
feature reconstruction ability if given more complete data during training.

Ablation Study. We further conduct ablation study on the contribution of
feature-to-feature reconstruction objective to segmentation performance and the
effectiveness of the learnable replacement tokens. As shown in Table 2, without
the guidance from reconstruction target (α = 0), the segmentation performance
drops greatly. Results in Table 3 illustrate that introducing learnable replacement
tokens for cross-modal feature reconstruction can improve performance.

Table 2. Ablation study on different
value of α for reconstruction loss.

α
Average Dice [%]

Enhancing Core Whole
0 54.68 72.16 81.75
1 63.84 78.28 86.32
1.5 63.05 77.45 85.53

Table 3. Ablation study on learnable
replacement tokens.

Config Average Dice [%]
Enhancing Core Whole

w/ Tr
m 63.84 78.28 86.32

w/o Tr
m 63.27 77.69 85.45
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4 Conclusion

In this paper, we proposed M3FeCon, a novel approach for segmentation us-
ing incomplete multimodal data. Specifically, we first masked some modalities
and treated missing modalities also as the masked modalities. Then, M3FeCon
introduced an MAE-like strategy for reconstructing masked modalities, which
effectively learns to approximate modality-complete feature representations for
segmentation. Experimental results on the BraTS18 dataset validated the effec-
tiveness of our method.
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