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Abstract. Semi-supervised learning (SSL) has significantly advanced
3D medical image segmentation by effectively reducing the need for la-
borious dense labeling from radiologists. Traditionally focused on model-
centric advancements, we anticipate that the SSL landscape will shift
due to the emergence of open-source generalist foundation models, e.g.,
Segment Anything Model (SAM). These generalists have shown remark-
able zero-shot segmentation capabilities with manual prompts, allow-
ing a promising data-centric perspective for future SSL, particularly in
pseudo and expert labeling strategies for enhancing the data pool. To this
end, we propose the Foundation Model-driven Active Barely Supervised
(FM-ABS) learning paradigm for developing customized 3D specialist
segmentation models with shoestring annotation budgets, i.e., merely
labeling three slices per scan. Specifically, building upon the basic mean-
teacher framework, FM-ABS accounts for the intrinsic characteristics of
3D imaging and modernizes the SSL paradigm with two key data-centric
designs: (i) specialist-generalist collaboration where the in-training spe-
cialist model delivers class-specific prompts to interact with the frozen
class-agnostic generalist model across multiple views to acquire noisy-
yet-effective pseudo labels, and (ii) expert-model collaboration that ad-
vocates active cross-labeling with notably low annotation efforts to pro-
gressively provide the specialist model with informative and efficient su-
pervision in a human-in-the-loop manner, which benefits the automatic
object-specific prompt generation in turn. Extensive experiments on two
benchmark datasets show the promising results of our approach over
recent SSL methods under extremely limited (barely) labeling budgets.
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1 Introduction

Medical image segmentation plays a crucial role in many image-guided therapies,
and deep learning (DL)-based methods have greatly advanced automatic organ
or tumor segmentation [9, 11]. Yet, these successes typically hinge on the avail-
ability of extensive densely labeled data, which is generally expertise-demanding,
expensive and laborious to obtain. Since unlabeled data is often abundant in
practice, semi-supervised learning (SSL) presents an attractive solution by effec-
tively utilizing both labeled and unlabeled data.

Typically, the SSL paradigm involves randomly selecting samples for radiolo-
gists to densely annotate based on the available budget, and then advanced SSL
algorithms utilize this mix of densely labeled and unlabeled data for training.
Considerable efforts on SSL have been made, with popular tracks including self-
training [1, 6, 20, 7, 23], consistency regularization [15, 24, 26, 12, 25, 22] and ad-
versarial training [28]. These advancements predominantly follow amodel-centric
paradigm, with performance inherently depending on the knowledge transfer
from labeled to unlabeled data. As such, most methods still appreciate optimistic
budgets for high-quality densely labeled data, struggling to achieve satisfactory
outcomes when faced with extremely limited (barely) labeling budgets [4].

Recently, generalist segmentation foundation models, featured by the Seg-
ment Anything Model (SAM) [10, 27], have shown impressive zero-shot segmen-
tation capabilities with manual prompts. However, recent work reveals that SAM
often struggles to deliver fine-grained results in various scenarios, including med-
ical imaging [8], where manual prompting is also notably laborious. Thus, the
need for fully automatic specialist models remains important. To utilize SAM in
medical images more effectively, Ma et al. finetuned SAM on substantial labeled
medical images [13], while Chen et al. [5] finetuned and extended the 2D SAM to
3D with adapters. Despite the promising results, these approaches are label- or
computation-intensive and offer limited customization when the specialist model
is expected to be architecturally and functionally tailored to practical require-
ments. Thus, rather than finetuning them, we expect these generalist models
to act as catalysts for new data-centric opportunities in the future SSL land-
scape, such as (i) automatically scaling up the labeled pool for comprehensive
supervised signals; and (ii) optimizing the use of precious annotation budgets.

To this end, we propose the Foundation Model-driven Active Barely Su-
pervised (FM-ABS) learning paradigm, as depicted in Fig. 1, for developing
customized 3D specialist segmentation models with scarce annotation budgets.
Specifically, building upon the basic mean-teacher framework with consistency
regularization, FM-ABS accounts for the intrinsic characteristics of 3D imag-
ing and further modernizes the SSL paradigm with two data-centric designs: (i)
Specialist-generalist collaboration (Fig. 1 (a)), where the in-training spe-
cialist model delivers class-specific prompts (i.e., boxes and points) to interact
with the frozen class-agnostic generalist model to acquire complementary pseudo
supervision. Due to the inherent lack of depth perception of the 2D generalist and
the ambiguity between object and background in medical images, the generalist-
based labels are very noisy. Thus, we propose generating pseudo labels across the
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Fig. 1. Overview of our Foundation Model-driven Active Barely Supervised (FM-ABS)
learning paradigm, consisting of (a) the specialist-generalist collaboration scheme (Sec.
2.2) and (b) the expert-model collaboration scheme (Sec. 2.3).

three views (axial, sagittal and coronal) and obtaining final labels through con-
sensus mechanisms. Equipped with the noise-tolerant loss, such extended noisy
supervision proves effective in the scarce supervision regime. (ii) Expert-model
collaboration, which advocates active multi-view cross-labeling (Fig. 1 (b)) for
3D images with notably low annotation efforts (merely labeling three orthogonal
slices per scan). This labeling strategy considers the intrinsic anatomical similar-
ity among adjacent 2D slices and the informative disparities across views. It aims
to progressively provide the local specialist model with informative and efficient
supervision in a human-in-the-loop manner to meet the model-informed needs.
This collaboration, in turn, facilitates automatic object-specific prompt genera-
tion. Our method is evaluated on two benchmark datasets and shows promising
performance under the extremely limited (barely) annotation budget.

2 Method

2.1 Preliminaries

Traditional SSL typically involves randomly preselecting an M -sample subset
from dataset D for dense labeling, after which both the labeled subset Dl (M
samples) and the unlabeled subsetDu (N samples) are used for training. Here, we
explore a new active barely supervised learning (BSL) setting, emphasizing more
efficient use of extremely limited annotation budgets. Unlike traditional SSL, our
active BSL incorporates a human-in-the-loop paradigm to select model-informed
informative samples for labeling during the training process, and employs an
efficient cross-labeling strategy (elaborated in Sec. 2.3). Specifically, at the r-th
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round of active learning, we have a cross-labeled subset Dcl
r = {(Xcl

i , Y cl
i )}Nr

i=1

with Nr cross-labeled scans, and the remainder as the unlabeled subset Du
r =

{Xu
i }

Nr+Mr

i=Nr+1 with Mr unlabeled scans. Xcl
i , Xu

i ∈ RH×W×D denote the scans

with height H, width W and depth D, and Y cl
i ∈ {0, 1}H×W×D denotes the

cross-label of Xcl
i (we focus on binary segmentation). Before training, we initiate

the process by randomly selecting a small subset of scans for labeling, thus
constructing Dcl

0 as the starting point. Our goal is to learn segmentation with
active cross-labeled data and unlabeled data by optimizing the following loss:

L = Lcross
sup (Dcl

r ) + Laux(Dcl
r ,Du

r ), (1)

where Lcross
sup and Laux denote the supervised loss from Dcl

r and auxiliary guid-
ance from all data, respectively. We adopt the partial cross-entropy loss on the
labeled voxels for Lcross

sup . As shown in Fig. 1, our framework is built upon the
popular mean-teacher SSL model with two data-centric strategies: the specialist-
generalist collaboration (Sec. 2.2) and the expert-model collaboration (Sec. 2.3).

2.2 Specialist-Generalist Collaboration

Mean-Teacher Model. The mean-teacher (MT) model is a standard SSL de-
sign powered by consistency regularization. Specifically, the trainable student fs

θ

is optimized by standard back-propagation, while the teacher model f t
θ̃
updates

through an exponential moving average (EMA) of past and current weights [15].
Denoting θ as the student’s weights and θ̃ as the teacher’s weights, θ̃ is updated
by θ̃t = αθ̃t−1 + (1 − α)θt at iteration t, where α is the EMA coefficient and
empirically set to 0.99 [26]. We also inherit the consistency loss Lc [26] as part of

Laux, formulated as: Lc = 1
J ·

∑
j d

(
f t
θ̃
(X + ξj), f

s
θ (X)

)
, where mean absolute

error is used as the distance function d(·, ·); ξj indicates the types of perturba-
tion, wherein Gaussian noise and random contrast adjustments are utilized here.
We adopt this stability constraint because (i) it helps regularize model behav-
ior and enhance generalizability [16, 29], alleviating overfitting caused by limited
supervision, and (ii) it encourages the model to focus on the intrinsic data struc-
ture, reducing the impact of confirmation bias induced by noisy generalist-based
pseudo labels as discussed later.
Generalist-based Multi-view Pseudo Label Learning. Cross-labeling en-
hances annotation efficiency but introduces significant challenges for traditional
SSL due to its sparse supervision. In response, we leverage pre-trained 2D gen-
eralist models, known for their robust zero-shot capabilities, to assist label aug-
mentation. In this synergy, the specialist model automatically generates prompts
for the generalist model, which, in turn, provides auxiliary supervision for the
specialist model through its responses to these prompts. The generalist model
(e.g., SAM trained on over one billion images) features an architecture compris-
ing an image encoder, a prompt encoder and a mask decoder. It supports both
sparse (points and boxes) and dense (grids or masks) prompt formats, allowing
flexible and class-agnostic segmentation. The essence of collaboration hinges on
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(i) automatically crafting effective prompts from the in-training specialist model,
(ii) improving the quality of generalist-based pseudo labels, and (iii) enabling
the specialist to effectively assimilate knowledge from these noisy labels.
Prompt Generation and Multi-view Pseudo Labeling. As depicted in Fig. 1 (a),
the image X is fed into the self-ensembling teacher model to obtain its mask
prediction P t. Acknowledging the 2D generalist’s difficulties in providing precise
pseudo labels and its lack of 3D perception, we inherit the multi-view labeling
spirit that generates object-specific 2D bounding boxes and randomly sampled
points from P t across the three views (c for coronal, a for axial, and s for sagit-
tal) to sparsely prompt the frozen 2D generalist slice-by-slice, thereby acquiring
three 3D pseudo labels (Y SAM

c , Y SAM
a , and Y SAM

s ). Given the expected inac-
curacies in P t due to limited supervision, we apply a modest random expansion
(0-10 pixels) to the prompt boxes. As observed in Fig. 2, the pseudo masks via
prompting from the three views are noisy and significantly differ, yet they over-
lap in certain areas. Thus, we fuse the view-specific masks and introduce two
intuitive strategies for label calibration: unanimous agreement (UA), consider-
ing labels only when there is consensus across all views; and majority voting
(MV), calibrating labels based on the most frequent prediction across views. As
such, we obtain the calibrated final label Y SAM

f as exampled in Fig. 2. Note
that due to the 2D generalist model’s low inference efficiency for 3D scans, we
strategically update Y SAM

f in a few task-specific rounds, balancing its utility
with computational demands.
Noise-Tolerant Collaborative Learning. Considering the inevitably noisy nature

of Y SAM
f , we further introduce a noise-tolerant Dice loss [18] to alleviate the

adverse effects of label noise, formulated as:

LSAM
sup =

∑
v |P s

v − Y SAM
f,v |γ∑

v (P
s
v )

2
+

∑
v (Y

SAM
f,v )

2
+ ϵ

, (2)

where P s
v is the predicted probabilities of voxel v from the student model and

Y SAM
f is converted to one-hot representation. We set γ = 1.5 and ϵ = 10−5 due

to demonstrated noise-robustness [18]. Note that when γ = 2, this loss degrades
into the typical Dice loss. Such generalist-based labels can provide effective early
supervision, yet, overly relying on these noisy labels in the later training stages
can mislead the model due to the memorization effect [2]. As for the consistency
loss Lc, the model struggles to perceive the object at the early stage, rendering
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this stability constraint relatively meaningless. Thus, we introduce two time-
dependent trade-off weights, λsam and λc, to modulate the importance of the
two losses during the collaborative training. Specifically, λsam(t) = 0.5 · [1 −
e−5(1− t

tmax
)
2

] and λc(t) = 0.1 · e−5(1− t
tmax

)
2

[26], where t and tmax denote the
current and the maximal iterations, respectively. As such, Laux is formulated as:

Laux(Dcl
r ,Du

r ) = λsamLSAM
sup (Dcl

r ,Du
r ) + λcLc(Dcl

r ,Du
r ). (3)

2.3 Expert-Model Efficient Collaboration

Active Selection. Moving beyond the traditional random selection, FM-ABS
embraces multi-round model-informed active selection during training. At each
round, we query the unlabeled pool based on model-informed scores for annota-
tion and grow the cross-labeled set, repeating until the budget is exhausted. We
kick off the process with a random initial selection using 20% of budget to warm
up the model. Our FM-ABS is equipped with a family of efficient active functions,
including (i) least confidence (LC) sampling for the top-K cases with minimal av-
erage value over the bottom quartile of prediction confidences (probabilities), (ii)
classical highest entropy (HE) sampling for top-K cases with maximal mean pre-
dictive entropy, and (iii) highest entropy ratio (HER) sampling for the top-K case
with the predominant share of high-entropy predictions beyond a time-dependent
threshold. K is set to 2 here. More specifically for (ii) and (iii), we denote psv as
the predicted probability of the student model at a voxel v, its normalized en-
tropy nev is computed by nev = −

∑
c∈C psc,v log

(
psc,v

)
/ log(|C|) ∈ [0, 1], where

c ∈ C is the semantic label. High entropy indicates a high level of uncertainty
to some extent. For HE, we compute the average entropy across all voxels to
determine the active score. In HER, we count the voxels with nev > β (β being
an empirical threshold from 0.5 to 0.75 via a Gaussian ramp-up function) and
then compute their ratio to the total voxel count, offering a clearer distribution
of high uncertainty across the image compared to HE.
Cross-Labeling Strategy. Densely labeling all slices in selected scans, as used
in traditional SSL, is budget-intensive and reduces expert-model collaboration’s
efficiency. Yet, weak labels (e.g., bounding boxes or scribbles) often result in only
rough boundary predictions due to an inherent lack of structural priors [4]. Thus,
as shown in Fig. 1, we explore a cross-labeling strategy: labeling just three key
slices per scan from the axial, sagittal and coronal views, respectively. This strat-
egy capitalizes on the inter-slice similarity in 3D medical images while retaining
the informative disparities across views [4] to facilitate 3D model training.

3 Experiments and Results

Materials. We perform extensive evaluation on the left atrium (LA) dataset
[21] with 100 3D gadolinium-enhanced magnetic resonance images (GE-MRIs)
and the brain tumor (BT) dataset [3] with 335 3D T2-FLAIR MRI. The images
have the isotropic resolution of 0.625 × 0.625 × 0.625 mm3 (LA) or 1 × 1 × 1
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Table 1. Comparison of the mean results over three runs. Standard deviations are in
parentheses. ⋆ denotes cross-labeling. ∗ denotes p ≤ 0.05 in pairwise comparison with
our best version (†) via the Wilcoxon signed rank test. The best results are in bold.

Method
Setting Metrics

Active Type Labeled/Unlabeled Labeled Slices Dice (%) ↑ Jaccard (%) ↑ 95HD (voxel) ↓ ASD (voxel) ↓
Left Atrium (LA) [21]

Sup (cross; baseline) random 20⋆/0 60 73.68 (10.81)* 59.36 (12.01)* 21.24 (4.90)* 6.14 (1.96)*
Sup (dense; upper bound) random 80/0 7040 91.56 (2.06) 84.50 (3.49) 5.03 (1.62) 1.52 (0.44)

MT [15] random 20⋆/60 60 76.45 (10.99)* 63.01 (12.65)* 19.75 (14.58)* 4.56 (1.93)*
UA-MT [26] random 20⋆/60 60 80.09 (10.86)* 69.06 (12.45)* 13.47 (7.31)* 4.36 (3.06)*
CPS [6] random 20⋆/60 60 66.84 (6.18)* 50.51 (6.83)* 18.26 (3.98)* 5.33 (1.26)*
ICT [17] random 20⋆/60 60 78.69 (9.90)* 65.87 (12.27)* 13.85 (7.63)* 4.82 (3.04)*
CPCL [25] random 20⋆/60 60 80.31 (6.03)* 67.51 (8.11)* 19.59 (6.69)* 5.73 (1.85)*
CAML [7] random 20⋆/60 60 72.87 (11.70)* 58.49 (12.87)* 20.61 (12.44)* 5.57 (2.24)*
ACMT [24] random 20⋆/60 60 77.24 (5.71)* 62.63 (7.13)* 29.47 (16.89)* 5.59 (1.35)*
DeSCO [4] random 20⋆/60 60 79.25 (9.89)* 68.42 (10.52)* 21.24 (13.48)* 5.21 (2.06)*

FM-ABS (UA) random 20⋆/60 60 83.68 (3.20) 72.07 (4.75) 21.62 (13.22) 5.14 (1.27)
FM-ABS (MV) random 20⋆/60 60 84.93 (4.18) 74.04 (6.21) 16.92 (11.52) 3.89 (1.14)
FM-ABS (UA) LC 20⋆/60 60 85.11 (3.84) 74.27 (5.76) 12.28 (5.08) 3.10 (1.44)
FM-ABS (MV) LC 20⋆/60 60 85.86 (4.54) 75.49 (6.80) 11.23 (4.77) 3.42 (1.26)
FM-ABS (UA) HE 20⋆/60 60 85.12 (3.87) 74.28 (5.71) 14.22 (9.53) 3.54 (1.23)
FM-ABS (MV) HE 20⋆/60 60 86.01 (3.04) 75.53 (3.04) 11.25 (5.54) 2.88 (0.91)
FM-ABS (UA) HER 20⋆/60 60 84.97 (7.19) 72.95 (9.40) 13.92 (4.73) 4.22 (1.56)
FM-ABS (MV)† HER 20⋆/60 60 86.14 (3.80) 75.85 (5.79) 11.54 (5.14) 3.03 (0.75)

Brain Tumor (BT) [3]

Sup (cross; baseline) random 25⋆/0 75 67.21 (17.05)* 52.99 (18.65)* 14.12 (11.93)* 4.63 (2.83)*
Sup (dense; upper bound) random 250/0 34173 87.07 (7.90) 77.48 (11.45) 7.84 (8.09) 1.79 (1.49)

MT [15] random 25⋆/225 75 77.91 (17.92)* 66.86 (20.92)* 21.63 (24.71)* 2.50 (1.88)
UA-MT [26] random 25⋆/225 75 78.43 (19.71)* 67.97 (21.58)* 19.07 (16.70)* 3.14 (3.57)*
CPS [6] random 25⋆/225 75 77.98 (19.20)* 67.27 (21.63)* 18.81 (19.34) 2.75 (2.53)*
ICT [17] random 25⋆/225 75 77.18 (19.26)* 66.22 (21.84)* 21.12 (25.38)* 2.70 (2.65)*
CPCL [25] random 25⋆/225 75 78.95 (17.68)* 68.47 (20.48)* 17.14 (17.67) 3.02 (2.59)*
CAML [7] random 25⋆/225 75 77.87 (14.65)* 65.92 (18.10)* 19.06 (21.32)* 2.38 (1.59)
ACMT [24] random 25⋆/225 75 76.68 (19.83)* 65.70 (22.16)* 19.81 (18.14)* 3.23 (2.96)*
DeSCO [4] random 25⋆/225 75 75.32 (16.35)* 64.08 (22.37)* 22.34 (19.22)* 3.19 (3.05)*

FM-ABS (UA) random 25⋆/225 75 80.02 (17.83) 69.62 (20.56) 20.79 (25.59) 2.26 (1.99)
FM-ABS (MV) random 25⋆/225 75 80.12 (15.23) 70.05 (18.79) 19.81 (23.42) 2.31 (1.16)
FM-ABS (UA) LC 25⋆/225 75 80.89 (15.21) 70.24 (18.44) 17.99 (21.41) 2.10 (1.43)
FM-ABS (MV) LC 25⋆/225 75 80.99 (14.93) 70.63 (17.86) 16.87 (20.69) 1.98 (1.57)
FM-ABS (UA) HE 25⋆/225 75 80.62 (15.73) 70.01 (19.03) 13.80 (17.17) 2.42 (2.09)
FM-ABS (MV) HE 25⋆/225 75 80.77 (16.86) 70.36 (19.91) 16.58 (20.43) 2.52 (2.73)
FM-ABS (UA) HER 25⋆/225 75 81.78 (15.90) 71.26 (19.01) 16.05 (19.92) 2.27 (1.70)
FM-ABS (MV)† HER 25⋆/225 75 81.93 (13.53) 71.78 (17.13) 17.63 (21.26) 2.26 (1.58)

mm3 (BT). We follow the data split and preprocessing used in [26, 25]. For LA,
80 and 20 samples are for training and testing, respectively [26]. For BT, 250, 25
and 60 samples are used for training, validation and testing, respectively [25].

Implementation and Evaluation Metrics. The framework is implemented
on PyTorch using an NVIDIA A100 GPU. Following the previous semi-supervised
works [26, 24], the same 3D V-Net [14] is adopted as the specialist. Considering
efficiency, we adopt the open-source MobileSAM [27] as the generalist (12ms
per slice) with lightweight image encoder ViT-Tiny [19]. Other SAM variants
are also discussed later. We randomly crop patches of 112 × 112 × 80 (LA) or
96×96×96 (BT) voxels as the input and use sliding window strategy with stride
of 18×18×4 (LA) or 64×64×64 (BT) voxels for inference. The batch size is set
to 4 including 2 cross-labeled data and 2 unlabeled data. tmax is set to 20,000.
The learning rate is initialized as 0.01 and decayed with a power of 0.9 after each
iteration. Weak data augmentation, including randomly flipping and rotating,
is applied [26]. The Dice score (Dice), Jaccard, 95% Hausdorff Distance (95HD)
and Average Surface Distance (ASD) are adopted as our evaluation metrics.
Code will be available at https://github.com/lemoshu/FM-ABS.

Comparison Study. Table 1 presents the quantitative results on the two datasets
under extremely limited labeling budgets. Besides the supervised baselines (Sup),
we include recent top-performing SSL methods [15, 26, 6, 17, 25, 7, 24, 4]. All meth-
ods are implemented with the same backbone and training protocols to ensure
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Fig. 3. (a) Exemplar 2D results. Grey color indicates the mismatch between the predic-
tion and the ground truth. (b) Ablation studies. (c) Sensitivity on different generalists.

fairness. As observed, under the standard random sampling protocol, both vari-
ants of FM-ABS consistently outperform the supervised baselines and recent
SSL methods, demonstrating the effectiveness of our specialist-generalist collab-
oration in the barely supervised context. Generally, employing majority voting
(MV) for calibrating multi-view generalist-based pseudo labels yields superior
outcomes. The performance of FM-ABS is further enhanced by adopting model-
informed active selection, highlighting the benefits of expert-model collabora-
tion. Specifically, in the LA task, FM-ABS (MV) equipped with HER sampling
strategy attains a Dice score of 86.14%, trailing the supervised upper bound by
5.42% Dice but with merely 0.8% of slices labeled. For the BT task, FM-ABS
(MV) also prefers the HER sampling strategy, achieving the best performance
with an 81.93% Dice score, utilizing merely 0.02% of labeled slices relative to
the supervised upper bound (87.07% Dice). Fig. 3 (a) further shows that the
predictions of our method align more accurately with the ground truth.

Ablation Study and Sensitivity against Different Generalists. To evalu-
ate the effectiveness of each component, we perform an ablation study using our
best version in the LA task, as depicted in Fig. 3 (b). Firstly, eliminating LSAM

sup

(Abla-1) results in a 7.6% decrease in Dice score, highlighting the significant
contribution of the specialist-collaborated generalist-based pseudo supervision.
In Abla-2, the removal of Lc reveals the crucial role of the classical consistency
constraint under perturbations. Such stability learning encourages isotropic local
smoothing around each data point [16], enhancing the model’s generalizability
and forcing it to learn from the intrinsic data structure that could alleviate
confirmation bias induced by noisy generalist-based labels. Beyond MobileSAM
[27] with an image encoder of 5.78M parameters, we also explore other SAM
variants: Meta’s SAM (ViT-B) with 86M parameters, the medically-specialized
MedSAM (86M) [13], and its lightweight counterpart, LiteMedSAM (5.78M).
Fig. 3 (c) reveals that SAM (ViT-B) marginally outperforms MobileSAM, albeit
at the cost of slower inference for pseudo labeling. Interestingly, MedSAM, de-
spite being specifically fine-tuned on extensive medical images, yields degraded
performance, possibly due to over-specialization on the finetuning dataset.
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4 Conclusion

In this study, we proposed the Foundation Model-driven Active Barely Super-
vised (FM-ABS) learning paradigm for developing specialist 3D medical image
segmentation models with meager annotation budgets. FM-ABS modernizes pre-
vious semi-supervised learning with two key data-centric designs: (i) leveraging
the class-specific prompts derived from the in-training specialist model to prompt
the frozen generalist model with strong zero-shot generalizability for complemen-
tary noisy-yet-effective pseudo supervision, and (ii) active cross-labeling with
notably low annotation efforts to progressively provide the specialist model with
informative and efficient supervision to meet model-informed needs, which ben-
efits the automatic prompt generation in turn. Our experiments demonstrated
the superiority of our approach over previous state-of-the-art methods. Notably,
grounded in the data-centric spirit, our approach is expected to be flexibly ex-
tended to other backbones and SSL frameworks beyond those used in our study.
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