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Abstract. In the evolving application of medical artificial intelligence, federated
learning is notable for its ability to protect training data privacy. Federated learn-
ing facilitates collaborative model development without the need to share local
data from healthcare institutions. Yet, the statistical and system heterogeneity
among these institutions poses substantial challenges, which affects the effec-
tiveness of federated learning and hampers the exchange of information between
clients. To address these issues, we introduce a novel approach, MH-pFLGB,
which employs a global bypass strategy to mitigate the reliance on public datasets
and navigate the complexities of non-IID data distributions. Our method enhances
traditional federated learning by integrating a global bypass model, which would
share the information among the clients, but also serves as part of the network
to enhance the performance on each client. Additionally, MH-pFLGB provides
a feature fusion module to better combine the local and global features. We val-
idate MH-pFLGB’s effectiveness and adaptability through extensive testing on
different medical tasks, demonstrating superior performance compared to exist-
ing state-of-the-art methods.

Keywords: Model heterogeneous · Personalized federated learning · Global by-
pass model.

1 Introduction

In the field of medical images, federated learning [20] has emerged as a key technique
for its ability to protect the privacy of training datasets. This approach allows for the
collaborative development of a unified global model, eliminating the need to directly
share local data from individual healthcare facilities. However, the application of feder-
ated learning in healthcare faces challenges such as statistical heterogeneity [?], due to
the diverse and non-uniformly distributed (non-IID) data across different institutions,
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and system heterogeneity [?], due to the unique architecture of local models by each
institution. These challenges compromise the efficiency of federated learning and hin-
der the seamless exchange of information between client models. Addressing the issues
of statistical and system heterogeneity presents a critical and impactful challenge in the
application of federated learning within healthcare facilities.

Previous works only focused on statistical heterogeneity and proposed personal-
ized federated learning methods [5,24,2,27,14,1,15]. Compared to traditional single
model settings [20,10,13], personalized federated learning allows each client to learn
their own model, effectively alleviating the problem of statistic heterogeneity. How-
ever, these methods still require models with the same structure for each client. Recent
works including FedMD [12], FedDF [16], DS-pFL [9] and KT-pFL [30] tackle statis-
tic and system heterogeneity in federated learning by sharing soft predictions among
clients. These approaches have advanced the field by addressing heterogeneity issue,
but depend heavily on public datasets for generating these soft predictions. However,
collecting the medical dataset for public usage would involve a certain level of privacy
requirements and complex censoring processes. Besides, the extensive size of public
datasets would largely increase the computational cost, thus limiting the application of
these techniques. All of these problems would significantly raise the cost of deploying
those methods.

To eliminate the reliance on public datasets, we propose a global bypass strategy
to address the challenges of heterogeneous models under the distribution of non-IID
data. Unlike traditional approaches that rely on soft prediction generated from public
datasets, our method adds a global bypass model to the local clients to share the infor-
mation among the clients and help the local clients. In each client, the global bypass
would not only learn the information from local data, but also help the previous local
network to make its prediction. In the server, we aggregate the global bypass to share
the information among each client. Additionally, we design the global bypass to be
small so the computational cost is less than what would be required for local training
on a public dataset.

Specifically, we propose framework Model Heterogeneous personalized Federated
Learning via Global Bypass (MH-pFLGB). Our global bypass consists of a body and
a head module. The body is a light-weighted encoder for feature extraction and the
head is a small module designed to fit the outputs of different tasks. To better fuse
the information from the local model and global bypass model, we designed a fusion
module named features weighted fusion to fusion the features from the body of the
local and global model. The fusion is based on allowing models to learn how to better
select weights for global and local features. This design would better utilize global
knowledge and integrate it with local features, so that it can improve the performance
of local models for each client.

Our contributions are summarized as follows:

– We introduce a novel personalized federated learning approach for dealing with het-
erogeneous models named MH-pFLGB. This approach leverages a global bypass
mechanism that obviates the need for public medical datasets, thereby reducing the
additional burdens associated with local training.
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Fig. 1: (a) Overview of our proposed MH-pFLGB framework. Each training process consists
of 3 steps. From a to c: a. Local model training. b. Global bypass model training. c. Upload,
aggregation, and download. (b) Features weighted fusion. More details can be found in Section
2.1 and Section 2.2.

– We design a global bypass model to transfer information among different clients
and enhance the result of each local client. Additionally, we integrate a feature
fusion module to more effectively combine features from the local model and the
global bypass.

– We demonstrate the efficacy and versatility of our MH-pFLGB through rigorous
testing on a variety of medical tasks, such as image classification and image seg-
mentation. Our method surpasses current state-of-the-art results in all these areas,
underscoring its potential and adaptability across a broad range of medical applica-
tions.

2 Methods

2.1 Pipeline

The pipeline of MH-pFLGB is shown in Fig. 1 (a). Each local client consists of an
architecture heterogeneous local model and a global bypass model that shares the same
network architecture among other clients. The local body extracts personalized features
from local clients, while the global body shares learned parameters among clients. Both
local and global models are divided into a body model to extract features, and a head
model to generate the network output using the features. Our training process consists
of 3 steps: a. Local model training, b. Global bypass model training, and c. Global
aggregation. We will explain the details of those steps in the following.

Local model training. In the local model training stage, the local model learns
from both the local dataset and the global insights provided by the bypass model. At
this stage, we freeze the global bypass model and only train the local model. For client
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i, its local model training loss function Lloc,i is:

Lloc,i = λl
locLl

loc(ŷ
l
i, yi) + λg

locL
g
loc(ŷ

g
i , yi), (1)

where ŷli and ŷgi are the predictions from the local head and global head. Ll
loc and Lg

loc
represent the loss functions for the local and global model output, respectively. λl

loc and
λg

loc are their corresponding weights. yi is the label of input data xi. Note that, even
though the global bypass is fixed, we still calculate the loss function on its output to
maintain generalizability when training the local model.

Global bypass model training. During the global model training phase, we freeze
the local model and fine-tune the global bypass model. This enables the body of the
global model to learn the information from each client. The loss function Lglob,i is
represented as:

Lglob,i = λg
globL

g
glob(ŷ

g
i , yi) + λl

globLl
glob(ŷ

l
i, yi). (2)

Lg
glob and Ll

glob represent the loss function for training the global and local model at
the global training stage, respectively. λg

glob and λl
glob are their corresponding weights.

Other variables are defined the same as in eq.(1). Similar to the local training stage,
local loss function Ll

glob is designed to avoid client drift.
Global Aggregation. As the global model is uploaded to the server, the global

aggregation process aggregates the model parameters, with distinct processes for both
the body and head of the global model. This aggregation employs weight averaging, as
outlined in [20]. Finally, the aggregated model is downloaded and distributed for the
next round of training.

At the inference stage, we fuse global and local features, and the fused features
output prediction results through the local head. The global head only participates in
the training stage and does not participate in the inference stage. This is similar to
adding a regularization term during local training, effectively preventing overfitting of
the local model.

2.2 Features Weighted Fusion

In order to better fuse global and local features, we propose a new feature method
named Feature Weighted Fusion. As shown in Fig. 1(b), the feature from global body
xg ensures that the dimension is the same as local client feature xl through upsampling
or downsampling as

x̂g = fup(xg) or fdown(xg), (3)

where fup(·) and fdown(·) respectively represent upsampling or downsampling opera-
tions. Specifically, in the classification task, we use 1× 1 convolution for both upsam-
pling and downsampling. In the segmentation task, we adopt deconvolution for upsam-
pling and convolution for downsampling, along with a global average pooling operation
on the results. Having x̂g , a Softmax operator is applied on x̂g and xl ’s channel-wise
digits:

ai =
exp(x̂g,i)

exp(x̂g,i)+exp(xl,i)
; bi =

exp(xl,i)
exp(x̂g,i)+exp(xl,i)

, 0 < i ≤ C, (4)
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Table 1: The results of classification task in different resolutions. The x2↓, x4↓, and x8↓ are
downsampling half, quarter, and eighth of high-resolution images. We evaluate ACC and MF1
results on BreaKHis dataset. The larger the better. Bold number means the best. Only local train-
ing, FedMD, FedDF, pFedDF, DS-PFL, KT-PFL, and MH-pFLGB use heterogeneous models in
each client. The four client models are set to ResNet{17, 11, 8, 5}, respectively. Other methods
use the unified model settings (ResNet17). MH-pFLGB achieves the best performance.

Method
high-resolution x2↓ x4↓ x8↓ Average
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

Only Local Training 0.7891 0.7319 0.8027 0.7461 0.7538 0.6852 0.6956 0.5867 0.7603 0.6875
FedAvg [20] 0.7406 0.6425 0.7908 0.7405 0.6892 0.6031 0.5774 0.4681 0.6995 0.6136
FedAvg+FT 0.7749 0.7218 0.8124 0.7511 0.7327 0.6628 0.6234 0.5073 0.7359 0.6608

SCAFFOLD [10] 0.7442 0.6512 0.8097 0.7533 0.6725 0.5963 0.5866 0.4732 0.7033 0.6185
SCAFFOLD+FT 0.7761 0.7229 0.8237 0.7709 0.7523 0.6872 0.6142 0.5005 0.7416 0.6704

FedProx [13] 0.7354 0.6386 0.7873 0.7421 0.6944 0.6107 0.5821 0.4687 0.6998 0.6150
FedProx+FT 0.7827 0.732 0.8055 0.7549 0.7548 0.6811 0.6071 0.4829 0.7375 0.6627

Ditto [14] 0.7304 0.6221 0.7661 0.6482 0.6065 0.5022 0.5931 0.4741 0.6740 0.5617
APFL [2] 0.7444 0.6568 0.7992 0.7355 0.6227 0.5229 0.6133 0.4986 0.6949 0.6035

FedRep [1] 0.7991 0.7618 0.8229 0.7697 0.7762 0.7182 0.6328 0.5091 0.7578 0.6897
LG-FedAvg [15] 0.7972 0.7523 0.5655 0.4397 0.6131 0.5080 0.6080 0.4902 0.6460 0.5476

FedMD [12] 0.7599 0.7083 0.8321 0.7829 0.7721 0.6893 0.6495 0.5439 0.7534 0.6811
FedDF [16] 0.7661 0.7253 0.8132 0.7629 0.7826 0.7342 0.6627 0.5627 0.7562 0.6963

pFedDF [16] 0.8233 0.7941 0.8369 0.7965 0.8121 0.7534 0.6843 0.6022 0.7892 0.7366
DS-pFL [9] 0.7842 0.7609 0.8334 0.7967 0.7782 0.7258 0.6327 0.5229 0.7571 0.7016
KT-pFL [30] 0.8424 0.8133 0.8441 0.8011 0.7801 0.7325 0.7032 0.6219 0.7925 0.7422

MH-pFLGB (Ours) 0.8952 0.8697 0.8963 0.8745 0.8681 0.8333 0.7793 0.7214 0.8597 0.8247

where C is the the dimension of x̂g and xl. a and b are the calculated weights. The local
fusion feature xlf is obtained by multiplying and adding the corresponding weights and
features.

xlf,i = aix̂g,i + bixl,i, 0 < i ≤ C, (5)

where xlf,i is the i-th element of xlf. xlf obtains the global fusion feature xgf for global
head through downsampling or upsampling as:

xgf = fdown(xlf) or fup(xlf). (6)

3 Experiments Setup

Task and Dataset. We verify the effectiveness of MH-pFLGB on 3 non-IID tasks.
For medical image classification (different resolution) task, our experiments are con-
ducted on the Breast Cancer Histopathological Image Database (BreaKHis) [26]. We
perform x2↓, x4↓, and x8↓ downsampling on the high-resolution images [36]. Each
resolution of medical images is treated as a client. In this task, we employed ResNet
{17, 11, 8, 5} as the local model of each client, respectively. For medical image classi-
fication (different label distributions) task, we employ 2 datasets, including a breast
cancer classification dataset BreaKHis (color images) and an Optical Coherence To-
mography (OCT) disease classification dataset OCT2017 (grayscale images) [11]. We
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design eight clients, each corresponding to a distinct heterogeneous model. These mod-
els include ResNet [4], ShuffleNetV2 [18], ResNeXt [29], SqueezeNet [8], SENet [6],
MobileNetV2 [23], DenseNet [7], and VGG [25]. For medical image segmentation
task, we use four datasets for polyp segmentation. They are ColonDB [33], ETIS [32],
ClinicDB [34] and Kvasir-SEG [35]. Each center’s dataset treated as a separate client.
Each client utilized a specific model, including Unet++ [31], FCN [17], Unet [22], and
Res-Unet [3].

Table 2: The results of Image Classification Task with Different Label Distributions. This task
includes breast cancer classification and OCT disease classification. We evaluate ACC and MF1
result in this task. The larger the better. Bold number means the best. MH-pFLID has the best
performance.

Breast cancer classification

Method
ResNet shufflenetv2 ResNeXt squeezeNet SENet MobileNet DenseNet VGG Average

ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1 ↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑
Only Local Training 0.59 0.455 0.845 0.8412 0.665 0.5519 0.84 0.7919 0.875 0.849 0.755 0.5752 0.855 0.6884 0.875 0.8515 0.7875 0.7005

FedMD [12] 0.692 0.5721 0.823 0.8027 0.704 0.6087 0.875 0.8544 0.907 0.8745 0.762 0.6627 0.835 0.6493 0.842 0.8001 0.8050 0.7281
FedDF [16] 0.721 0.5949 0.817 0.8094 0.723 0.6221 0.893 0.8735 0.935 0.9021 0.757 0.6609 0.847 0.6819 0.833 0.7826 0.8158 0.7409
pFedDF [16] 0.755 0.6536 0.853 0.8256 0.741 0.6237 0.894 0.8742 0.935 0.9021 0.796 0.7219 0.879 0.7095 0.874 0.8521 0.8409 0.7703
DS-pFL [9] 0.715 0.6099 0.792 0.7734 0.765 0.6547 0.899 0.8792 0.935 0.9021 0.794 0.7331 0.853 0.6691 0.851 0.8266 0.8255 0.7560
KT-pFL [30] 0.765 0.6733 0.87 0.8331 0.755 0.6432 0.885 0.8621 0.935 0.9021 0.78 0.6931 0.865 0.6819 0.905 0.9023 0.8450 0.7739

MH-pFLGB (Ours) 0.830 0.7076 0.945 0.9399 0.820 0.7796 0.975 0.9608 0.962 0.9452 0.821 0.7080 0.893 0.7015 0.995 0.9928 0.9038 0.8419
OCT disease classification

Method
ResNet shufflenetv2 ResNeXt squeezeNet SENet MobileNet DenseNet VGG Average

ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC ↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑
Only Local Training 0.9162 0.9099 0.8922 0.8918 0.8694 0.8253 0.8472 0.8361 0.9388 0.9311 0.914 0.7236 0.9054 0.9 0.9262 0.9077 0.9012 0.8657

FedMD [12] 0.8828 0.8349 0.8856 0.8531 0.8246 0.7822 0.8254 0.8021 0.8552 0.8321 0.9254 0.7542 0.9254 0.9119 0.9552 0.9293 0.8850 0.8375
FedDF [16] 0.854 0.8229 0.913 0.8936 0.865 0.8241 0.8054 0.7749 0.8926 0.8733 0.9178 0.7361 0.8958 0.8831 0.963 0.9308 0.8883 0.8424
pFedDF [16] 0.9364 0.9152 0.92 0.913 0.881 0.8327 0.863 0.8239 0.941 0.8952 0.931 0.7249 0.897 0.8829 0.961 0.9234 0.9163 0.8639
DS-pFL [9] 0.8432 0.8079 0.864 0.8604 0.874 0.8356 0.835 0.7449 0.8874 0.8821 0.8998 0.7532 0.8592 0.8264 0.8814 0.8731 0.8680 0.8230
KT-pFL [30] 0.9532 0.9392 0.965 0.963 0.8594 0.8466 0.9136 0.9067 0.955 0.943 0.9622 0.8099 0.9038 0.8794 0.927 0.9022 0.9299 0.8988

MH-pFLGB (Ours) 0.9634 0.9507 0.9950 0.9864 0.8824 0.8539 0.9672 0.9573 0.9714 0.9639 0.9674 0.8055 0.9088 0.9020 0.9496 0.9288 0.9506 0.9186

Implementation Details. MH-pFLGB adopts learning rates of 1 × 10−4 and 1 ×
10−5 for the local model training and global model training stage, respectively. The
batch size is set to 8. In experiments, all frameworks have a communication round of
100. Local training epochs are 5 (4 epochs in the first stage and 1 round in the second
stage for MH-pFLGB). For classification, all of the loss functions are cross-entropy
loss, and all of the loss functions are Dice loss for segmentation tasks. λl

local and λg
glob are

set to 0.9. λg
loc and λl

glob are 0.1. The performance evaluation of the classification task is
based on two metrics, accuracy (ACC) and macro-averaged F1-score (MF1), providing
a comprehensive assessment of the model’s robustness [28]. Additionally, Dice is used
to evaluate the segmentation task performance across frameworks [5]. Moreover, we
implement MH-pFLGB using PyTorch 1.10 [21] and train it on an NVIDIA GeForce
RTX 3090 Ti GPU. We have included more baseline, datasets, training settings, and
model structure details in the supplementary materials.

4 Results and Discussion

4.1 Medical Image Classification (Different Resolutions)

In this task, we employ the ResNet family model to train breast cancer medical images
under different resolutions. The higher the image resolution of this client, the deeper
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(k) GT(a) FedAvg (c) FedProx(b) SCAFFOLD (d) Ditto (e) APFL (f) LG-FedAvg (g) FedRep (h) FedSM (i) LC-Fed (j) Ours

Fig. 2: Visualized comparison of Federated Learning in medical image segmentation. We ran-
domly select four samples from different clients to form the visualization. (a-j) Segmentation
results by a model trained with FedAVG, SCAFFOLD, FedProx, Ditto, APFL, LG-FedAvg, Fe-
dRep, FedSM, LC-Fed, and our method MH-pFLGB; (k) Ground truths (denoted as ‘GT’).

and more complex the model we adopt. In Table 1, compared to other federated learn-
ing frameworks, MH-pFLGB achieves the best performance. This indicates that MH-
pFLGB, based on the global bypass model paradigm, effectively enables local hetero-
geneous models within the same family to fuse global knowledge, thereby enhancing
the performance of local models. Furthermore, MH-pFLGB demonstrates a more sig-
nificant advantage in terms of the MF1 metric, highlighting its ability to improve the
robustness of local heterogeneous models.

4.2 Medical Image Classification (Different Label Distributions)

In Table 2, the experimental results for the medical image classification task with dif-
ferent label distributions, where each client uses heterogeneous models, show that MH-
pFLGB achieves the optimal results. This demonstrates that, compared to heteroge-
neous federated learning methods based on soft predictions, the global bypass model
approach of MH-pFLGB has advantages. It can more effectively utilize knowledge from
other clients to guide local client learning. Compared to only local training, MH-pFLGB
enhances the local performance of each heterogeneous model. This indicates that our
proposed feature weighted fusion method fuses global and local features well, thereby
improving the performance of local models.

4.3 Medical Image Segmentation

We validate the effectiveness of MH-pFLGB in medical image segmentation tasks. Ta-
ble 3 presents the results of previous federated learning frameworks in the segmentation
task, demonstrating that MH-pFLGB achieves the best outcomes. This indicates that our
framework can effectively fuse global features and local heterogeneous model features
from various clients, thus performing well in various downstream tasks. Meanwhile,
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Table 3: For the medical image segmenta-
tion task, we evaluate the Dice result on
Polyp dataset. The larger the better. Row
“Only Local Training” and “MH-pFLGB”
use heterogeneous models in each client.
The four client models are set to Unet++,
FCN, Unet, and ResUnet, respectively. For
other methods, their clients use the uni-
fied model settings (Unet). MH-pFLGB
achieves the best segmentation results.

Methods Client1 Client2 Client3 Client4 Average
FedAvg [20] 0.5249 0.4205 0.5676 0.5500 0.5158
FedAvg+FT 0.6047 0.4762 0.7513 0.6681 0.6251

SCAFFOLD [10] 0.5244 0.3591 0.5935 0.5713 0.5121
SCAFFOLD+FT 0.5937 0.4312 0.8231 0.7208 0.6422

FedProx [13] 0.5529 0.4674 0.5403 0.6301 0.5477
FedProx+FT 0.7441 0.5701 0.7438 0.6402 0.6746

Ditto [14] 0.5720 0.4644 0.6648 0.6416 0.5857
APFL [2] 0.6120 0.5095 0.6333 0.5892 0.5860

LG-FedAvg [15] 0.6053 0.5062 0.7371 0.5596 0.6021
FedRep [1] 0.5809 0.3106 0.7088 0.7023 0.5757
FedSM [5] 0.6894 0.6278 0.8021 0.7391 0.7146

LC-Fed [27] 0.6233 0.4982 0.8217 0.7654 0.6772
Only Local Training 0.7049 0.4906 0.8079 0.7555 0.6897
MH-pFLGB (Ours) 0.7525 0.7010 0.8469 0.7769 0.7693

Table 4: Ablation studies of MH-pFLGB.

Methods
Breast Cancer Segmentation
ACC↑ MF1↑ Dice↑

MH-pFLGB 0.9038 0.8419 0.7693
w/o Global Head 0.8821 0.8192 0.7442
w/o Global Body 0.8295 0.7366 0.7198

w/o Features Weighted Fusion 0.8588 0.8009 0.7455
Only Local Training 0.7875 0.7005 0.6897

Table 5: GFLOPS and parameters of local het-
erogeneous models and messenger models in var-
ious tasks. The smaller the better. Among the four
tasks, the GFLOPS and parameters of the messen-
ger models are much smaller than those of the local
models.

Tasks Dataset Model GFLOPS #Params

Medical Image
Classification

(Different Resolution)

BreaKHis
(384x384x3
- 48x48x3)

ResNet17 3.495 4.231M
ResNet11 0.667 2.104M
ResNet8 0.140 1.558M
ResNet5 0.044 1.359M
Messeger 0.01-0.07 0.035M

Medical Image
Classification

(Different Label
Distributions)

BreaKHis
(384x384x3)

ResNet 10.020 11.111M
Shufflenetv2 1.719 1.730M

ResNeXt 41.245 7.930M
squeezeNet 7.774 1.832M

SENet 80.370 12.372M
MobileNet 1.870 1.934M
DenseNet 13.461 1.147M

VGG 57.524 40.045M
Messeger 0.070 0.032M

OCT 2017
(256x256x1)

ResNet 4.351 11.090M
Shufflenetv2 0.735 1.712M

ResNeXt 18.256 7.910M
squeezeNet 3.342 1.820M

SENet 35.644 12.363M
MobileNet 0.812 1.921M
DenseNet 5.954 1.14M

VGG 25.501 40.020M
Messeger 0.012 0.035M

Medical Image
Segmentation Task

ColonDB
ETIS

ClinicDB
Kvasir-SEG
(256x256x3)

Unet++ 34.906 10.421M
FCN 54.742 32.560M
Unet 56.435 33.090M

ResUnet 25.572 19.913M
Messeger 0.681 0.196M

the visualization results in Fig. 2 show that the segmentation results of MH-pFLGB are
closer to ground truth.

4.4 Ablation Experiments

To verify the effectiveness of MH-pFLGB’s key components, we conduct a compar-
ative analysis by removing each of the three elements (global head, global body, and
feature-weighted fusion) during breast cancer classification tasks with different label
distributions and segmentation tasks, as shown in Table 4. The experimental results in-
dicate that more parameter sharing is beneficial for MH-pFLGB, and features weighted
fusion effectively improves the performance of local heterogeneous models.

4.5 GFLOPS and Parameters

We compare the GFLOPS and parameter of the global bypass model with local het-
erogeneous models in three tasks. The results of Table 5 show that the GFLOPS and
parameters of the global bypass model are much smaller than those of the local hetero-
geneous model on all the tasks.
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5 Conclusion

MH-pFLGB can effectively solve the problems of statistic heterogeneity and system
heterogeneity faced in federated learning. MH-pFLGB, based on the global bypass
model paradigm, offers a solution to these issues. MH-pFLGB introduces a lightweight
global bypass model in each client and designs a feature weighted fusion to fuse local
and global knowledge. These can enable local heterogeneous models to capture in-
formation from other clients well under statistic heterogeneity. Numerous experiments
have demonstrated that our method outperforms existing federated learning frameworks
with heterogeneous models in multiple tasks.
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