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Abstract. Surgical triplets recognition aims to identify instruments, verbs, and
targets in a single video frame, while establishing associations among these com-
ponents. Since this task has severe imbalanced class distribution, precisely iden-
tifying tail classes becomes a critical challenge. To cope with this issue, exist-
ing methods leverage knowledge distillation to facilitate tail triplet recognition.
However, these methods overlook the low inter-triplet feature variance, dimin-
ishing the model’s confidence in identifying classes. As a technique for learning
discriminative features across instances, contrastive learning (CL) shows great
potential in identifying triplets. Under this imbalanced class distribution, directly
applying CL presents two problems: 1) multiple activities in one image make
instance feature learning to interference from other classes, and 2) limited train-
ing samples of tail classes may lead to inadequate semantic capturing. In this
paper, we propose a tail-enhanced representation learning (TERL) method to ad-
dress these problems. TERL employs a disentangle module to acquire instance-
level features in a single image. Obtaining these disentangled instances, those
from tail classes are selected to conduct CL, which captures discriminative fea-
tures by enabling a global memory bank. During CL, we further conduct seman-
tic enhancement to each tail class. This generates component class prototypes
based on the global bank, thus providing additional component information to
tail classes. We evaluate the performance of TERL on the 5-fold cross-validation
split of the CholecT45 dataset. The experimental results consistently demonstrate
the superiority of TERL over state-of-the-art methods. Our code is available at
https://github.com/CIAM-Group/ComputerVision Codes/tree/main/TERL.

Keywords: Surgical Videos · Triplet Recognition · Multi-label classification ·
Imbalanced Class Distribution · Prototype Learning.

1 Introduction

Triplet recognition aims to identify fine-grained surgical activities in a video frame [14].
It can foster safety in the operating room by providing surgeons with intra-operative
context-aware support [22]. As a key technology for automatically extracting informa-
tion from surgical videos, it is also essential for surgical archives, postoperative recov-
ery, and surgical education [18,21,1]. In this task, each surgical activity is represented
as a triplet of ⟨instrument, verb, target⟩. To accurately identify the triplet, it is crucial
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Fig. 1: Top 5 predictions from the SOTA method (i.e., MT4MTL-KD [7]) and our
method. Ground-truth labels are highlighted in green.

not only to recognize the involved instrument, verb, and target but also to capture the
associations among these components.

Existing methods employ the multi-task learning (MTL) framework to jointly op-
timize three component tasks and a triplet recognition task [15,16,4,24,13,5]. Across
these four tasks, a shared backbone is utilized for feature extraction, thereby enabling
the utilization of multiple component features for component association learning. For
example, RDV [16] leverages the attention mechanism to learn associations based on
features yielded from ResNet-18 [9]. Since the triplet task has an imbalanced class dis-
tribution, these MTL models may be over-confident in head classes, resulting in insuffi-
cient tail class learning. To solve this issue, many works leverage knowledge distillation
to facilitate tail triplet recognition [25,7]. For instance, Yamlahi et al. [25] employ soft
supervision to mitigate over-confidence, while Gui et al. [7] train models with respect to
each component task, thereafter assisting the multi-task student training. However, these
works overlook inter-class feature variance modeling and are under-confident in recog-
nizing triplets. As shown in Fig. 1, tail triplets of < bipolar, coagulate, cysticplate >,
< bipolar, coagulate, gallbladder >, and < bipolar, coagulate, liver > have limited
inter-class feature variance. This overlook may lead to a low confidence score in rec-
ognizing < bipolar, coagulate, liver >. Under imbalanced classes, this issue is more
severe, as capturing tail semantics is more difficult than that of balanced classes.

As a technique for learning instance discriminative features, CL shows great poten-
tial in medical image analysis [2,26,23,3]. This motivates us to conduct CL between
tail triplet classes, thereby enhancing their importance in model training. However, di-
rectly applying CL to an imbalanced triplet task has two problems: 1) multiple activities
in one image make instance feature learning to interference from other classes, and 2)
limited training samples of tail classes may lead to inadequate semantic capturing.

In this paper, we propose a tail-enhanced representation learning (TERL) method
to address these problems. TERL first incorporates a disentangle module into MTL
triplet recognition, thus acquiring instance-level features in a single image. Obtaining
these features, those from tail classes are selected to conduct CL. It enables a memory
bank to store tail instances, thereafter learning discriminative features across classes.
During CL, we further conduct semantic enhancement for each tail class. This generates
component class prototypes based on the bank, thus providing additional component
information to facilitate tail triplet semantic capturing. We conduct experiments on an
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Fig. 2: Overall workflow of TERL.

official 5-fold cross-validation split of the CholecT45 dataset [14]. The experimental
results show that TERL outperforms state-of-the-art methods.

2 Methodology

In this paper, we denote each training sample as {X,Y} = {xt,yt}Tt=1, where X is
a video sequence comprised of T frames and xt is a RGB frame with height H and
width W . We use a one-hot vector yt = {yt,k ∈ {0, 1}}Kk=1 to represent its ground-
truth label, where K indicates the number of classes. The objective of surgical triplet
recognition is to train a multi-label classification model with minimized prediction error
on the test set {X,Y}. Following [7], the classification model is trained in a two-stage
manner, where the spatial and temporal models are trained in different stages. We first
employ TERL to train a spatial model. Its output features are sequentially stacked and
fed to the temporal model. This model is trained in a multi-task manner, and we employ
the weighted cross-entropy loss to optimize the parameters. During the inference stage,
the optimized spatial and temporal models are fixed for video recognition.

2.1 Overall Workflow of TERL

As shown in Fig. 2 (a), TERL adopts the MTL framework for tail-enhanced triplet
recognition (TETR), while employing instance-level CL (ILCL) to model inter-triplet
feature variance. During CL, we further develop prototype-based semantic enhance-
ment (PBSE) to facilitate tail semantic capturing. By feeding the video frames and
labels with respect to component (i.e., instrument (I), verb (V), and target (T)), triplet
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(IVT), and tail triplet (Ta) classification tasks, a feature encoder followed by a multi-
head classifier (MHC) are trained to conduct TETR. After that, the tail embeddings de-
rived from MHC are stored in a global memory bank for ILCL. Obtaining the memory
bank, component class prototypes are generated to enhance the component semantics
within each tail embedding. The overall training objective is defined as

L = LCls + αLCL + βLP , (1)

where LCls, LCL and LP denote the training objectives of TETR, ILCL, and PBSE,
respectively. α = β = 1 are coefficients used to balance the loss terms.

2.2 Tail-Enhanced Triplet Recognition

Model Structure. As shown in Fig. 2 (a), TETR feeds the input frame x ∈ R3×H×W

into a feature encoder, followed by MHC. The training objective for TETR adopts a
multi-task classification loss LCls =

∑
a∈A La

Cls, where A = {I, V, T, IV T, Ta}. In
specific, we employ a simplified asymmetric loss [19] as La

Cls, i.e.,

La
Cls =

1

Ka

Ka∑
k=1

{
(1− ŷak)

γ+ log(ŷak), yak = 1,

(ŷak)
γ− log(1− ŷak), yak = 0,

(2)

where ŷak and yak are the prediction and ground-truth of the k-th class of task a in the
video frame x, respectively. The total loss is computed by averaging this loss over all
samples in the current training batch. γ+ and γ− are focusing parameters of positive
and negative values, respectively. We empirically set γ+ = 0 and γ− = 2.

Multi-Head Classifier. As shown in Fig. 2 (b), MHC consists of two branches, where
a multi-task branch solves the triplet and its three component tasks, and a tail branch
disentangles the tail embedding and solves the tail triplet task. We denote the feature
maps output from the feature encoder as F ∈ RD× H

32×
W
32 . In the multi-task branch, we

feed the feature maps F into four task heads, each of which comprises a 1× 1 convolu-
tion layer and an average pooling layer. The feature maps from the convolution layer of
the triplet head are referred to as class activation maps (CAMs), with task predictions
being output from the pooling layer. To disentangle the instance-level feature for tail
class k, we derive the k-th channel of CAMs, which is denoted Ck ∈ R1× H

32×
W
32 . In the

tail branch, we concatenate Ck with the image-level feature F and utilize a 1× 1 con-
volutional layer to convert the concatenated features from (D + 1)-dimensional space
to D-dimensional space, obtaining the disentangled feature

F̃k = Conv(Concat(Ck,F);D). (3)

Finally, the tail triplet prediction and embedding are obtained by a tail head and an
average pooling layer, respectively.
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2.3 Instance-Level Contrastive Learning

We employ Moco [8] to implement ILCL. ILCL captures semantics by maximizing
the similarity between positive pairs, i.e., embeddings from the same tail triplet class,
and minimizing it between negative ones, i.e., embeddings from different tail triplet
classes. As shown in Fig. 2, x and x

′
are the input frame and its augmented version,

respectively. In ILCL, they are passed through two networks, of which each consisting
of a feature encoder and the proposed MHC. The two disentangled tail embeddings
are denoted as query embedding e and key embedding e

′
, respectively. Following [8],

the key embeddings produced by previous batches are stored in a memory bank B =
{e1, e2, ..., eL}, and this branch employs momentum-updating strategy. The positive
key embeddings is denoted as Ep = {ei ∈ B : yi = yq}, where yq is the triplet
label of e. Under the imbalanced class distribution, we adopt the loss function of k-
positive CL [11] as the training objective following [10]. This function employs the
InfoNCE [17] loss, and keeps the number of positive embeddings equal for each class:

LCL =
1

k + 1

∑
ep∈Ek

p∪e′

log
exp

(
e⊤ep/τ

)
exp (e⊤e′/τ) +

L∑
j=1

exp (e⊤ej/τ)

,
(4)

where Ek
p is a subset of Ep, comprising k randomly drawn embeddings. The tempera-

ture hyperparameter τ and the number of positive embeddings k are set to default values
of 0.07 and 7, respectively.

2.4 Prototype-Based Semantic Enhancement

PBSE guides the semantic learning by maximizing the similarity between the tail em-
bedding and corresponding component class prototypes. For query embedding e, we
denote the tail triplet label and the corresponding component task labels as yTa

q and
{ỹa

q ∈ RKa : a ∈ {I, V, T}}, respectively. For component task a, we find the set of
embeddings that has the same component labels with yTa

q , denoted as Ba = {ei ∈
B : ỹa

i = ỹa
q}, where ỹa

i is the component label of ei. By averaging each embedding
channel within Ba, the prototype channel is obtained as

paq,d =
1

|Ba|

|Ba|∑
i=1

ei,d, (5)

where ei,d denotes the d-th channel of ei, and |Ba| is the set length of Ba. The cor-
responding class prototype of component a is acquired by concatenating all channels,
denoted as pa

q = (paq,1, p
a
q,2, ..., p

a
q,D)⊤. The training objective is formulated as

LP =
∑

a∈{I,V,T}

log
exp

(
e⊤pa

q

)
Ka∑
j=1

exp
(
e⊤pa

j

) . (6)
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3 Experiments

3.1 Datasets and Evaluation Metrics

This paper employs a public challenge dataset from CholecTriplet 2021 [14], which
is referred to as CholecT45. This dataset comprises 45 laparoscopic cholecystectomy
video sequences recorded at a frequency of 1 fps, resulting in a total of 100.9K frames
and 161K triplet instance labels. Each frame is annotated with 100 binary action triplets,
consisting of 6 instruments, 10 verbs, and 15 targets. To evaluate the effectiveness of
TERL, we adopt the official 5-fold cross-validation strategy for model evaluation. This
strategy involves a 31-5-9 split for training, validation, and testing, respectively. Follow-
ing [7], we utilize Fold 1 to perform ablation and sensitivity studies. The performances
are evaluated by using the average precision (AP) metrics, which are commonly em-
ployed in previous works [16,12,15]. AP metrics comprise three key aspects: triplet
average precision (APIV T ), association average precision (APIV and APIT ), and com-
ponent average precision (API , APV , and APT ). The main metric is APIV T , which
evaluates the recognition of complete triplets.

3.2 Implementation Details

Following [7], the input video frames for spatial modeling undergo light data augmenta-
tions, including resizing images to 224×224, flips, rotations, brightness, and saturation
perturbations with the probability of 0.5. Throughout all training stages, models are op-
timized using stochastic gradient descent (SGD) with a momentum of 0.95. In TERL,
triplet class indexes 17, 19, and 60 are head classes, whereas the remaining classes are
considered as the tail. The head class is selected if the category has more than 10,000
samples. We employ the Swin Transformer pre-trained on ImageNet-22k as the spatial
model, with the output feature dimension D = 768. It is trained for 20 epochs with a
learning rate of 1e-5 and a batch size of 16. All hyperparameters in ILCL are consistent
with those in [10]. For the temporal model, we utilize a four-stage TCN, with each stage
consisting of 12 dilated convolution layers, and the hidden layer dimension is set to 512.
Our temporal model takes the entire video sequence as input following the specification
in [6]. We train the temporal model for 1000 epochs with an initial learning rate of 1e-2,
which decays exponentially after 200 epochs with the rate of 0.99.

3.3 Comparison with the State-of-the-Arts

We compare our TERL with state-of-the-art triplet recognition methods (SOTAs), in-
cluding RDV [16], RiT [20], Chen et al. [4], Yamlahi et al. [25], and MT4MTL-
KD [7]. We implement TERL with different backbones, where TERL-T and TERL-B
represent Swin Transformer Tiny and Base, respectively. Moreover, we ensemble the
trained models in TERL-T and TERL-B to obtain final predictions of TERL-Ens. This
is implemented by averaging sigmoid probabilities derived from the selected models.
Table 1 presents the mean and standard deviation results of AP on the cross-validation
split. The results indicate that TERL achieves comparable performance to MT4MTL-
KD using a single model. Moreover, an additional improvement of 1.5% APIV T is
observed by implementing TERL-Ens.
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Table 1: Benchmark triplet recognition AP (%) on CholecT45 dataset. bold = best score.
underlined = best score in the state-of-art methods.
Method Backbone API APV APT APIV APIT APIV T

RDV [16] Res18 89.3±2.1 62.0±1.3 40.0±1.4 34.0±3.3 30.8±2.1 29.4±2.8
RiT [20] Res18 88.6±2.6 64.0±2.5 43.4±1.4 38.3±3.5 36.9±1.0 29.7±2.6
Chen et al. [4] Res50 91.2±1.9 65.3±2.8 43.7±1.6 - - 33.8±2.5
Yamlahi et al. [25] SwinB×2+SwinL - - - - - 38.5±0.0
MT4MTL-KD [7] Res18+SwinL 93.9±2.0 73.8±2.0 52.1±5.2 46.5±3.4 46.2±2.3 38.9±1.6

TERL-T SwinT 93.1±2.4 71.1±1.7 48.9±3.9 44.9±4.4 41.9±3.1 35.7±2.3
TERL-B SwinB 93.5±2.4 72.8±2.8 51.3±3.8 47.0±5.6 45.7±2.8 38.9±2.5
TERL-Ens SwinT+SwinB 94.5±2.2 74.0±1.6 52.9±4.9 47.6±5.2 46.3±2.1 40.4±2.4

Table 2: Ablation on key modules within TERL.

Method API APV APT APIV APIT APIV T

Baseline-SwinT 90.0 65.7 47.9 37.7 41.4 32.6
+ TETR 89.6 67.5 47.3 38.4 42.2 33.6
+ TETR + PBSE 90.6 69.0 49.5 40.3 43.7 34.9
+ TETR + ILCL 90.6 70.7 49.1 40.9 42.9 36.1
+ TETR + ILCL + PBSE 91.5 71.3 54.0 43.2 46.1 39.0

3.4 Ablation Study

Ablation on key modules within TERL. We conduct ablation experiments to validate
the effectiveness of TETR, ILCL, and PBSE. Initially, we employ a vanilla multi-task
approach (Baseline-SwinT) based on SwinT. This configuration excludes the tail branch
defined in MHC and includes the triplet and its three component tasks. Subsequently,
we integrate key modules by adding the corresponding loss terms. Table 2 presents
the results obtained in Fold 1. According to these results, we observe that adding a
tail branch results in only a marginal improvement of 1.0% APIV T . Moreover, PBSE
and ILCL yield additional improvements of 2.3% and 3.5% APIV T , respectively. Our
TERL, which combines both ILCL and PBSE, achieves the highest APIV T of 39.0%.

Ablation on key modules within TETR and PBSE. In TETR, the tail branch con-
catenates CAM with the image-level feature, thereby disentangling tail instances. To
investigate the contribution of CAM, we test the TERL performance with or without
this map. As shown in the left of Fig. 3, by leveraging the CAM, APIV T achieved
by TERL is improved from 37.5% to 39.0%. We further conduct ablation experiments
to investigate the contribution of each component enhancement within PBSE. These
TERL performances are tested over different numbers and combinations of compo-
nent tasks. As shown in the right of Fig 3, enhancing any component task can lead to
performance improvement, and more component refinements result in more significant
improvements. As for the impact of enhanced components on TERL performance, the
instrument task contributes the most, while the target contributes the least. In this triple
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Fig. 3: Left: Ablation on CAM in TETR. Right: Ablation on components in PBSE.
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Fig. 4: Left: APIV T scores under different balance weights of ILCL (α) and PBSE (β).
Right: APIV T scores under different hyper-parameters used in ILCL.

recognition, the target recognition is more challenging than the other two, resulting in
the poor performance of target prototypes and thus leading to less contribution in TERL.

3.5 Sensitivity Studies

We conduct sensitivity studies on four hyper-parameters, including two hyper-parameters
used in ILCL and two balance weights of ILCL and PBSE. In Eq. 1, α and β are used
to balance the contributions of ILCL and PBSE losses. To study the loss impact, we
test the performance of TERL using α = 1, β ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5}, and
α ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5}, β = 1. The left of Fig. 4 shows the APIV T values
achieved on Fold 1. We can find that TERL is sensitive to these hyper-parameters, and
achieves the best in α = β = 1. As for hyper-parameters within ILCL, we test the per-
formance using different numbers of positive embeddings k and bank sizes L in Eq. 4.
Results in the right of Fig. 4 demonstrate TERL prefers low k values and is robust in
L ∈ {8162, 16384, 32768}.

4 Conclusion

This paper proposes a tail-enhanced representation learning method for multi-task triplet
recognition (TERL). TERL incorporates a disentangle module into MTL triplet recogni-
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tion, thus acquiring instance-level features in a single image. Obtaining these features,
those from tail classes are selected to conduct CL. This is implemented by capturing
discriminative features across classes, which are stored in a global memory bank. Dur-
ing CL, we further conduct semantic enhancement for each tail class. This generates
component class prototypes based on the bank, thus providing additional component
information to facilitate tail triplet semantic capturing. TERL achieves outstanding per-
formance on the cross-validation split of the CholecT45 dataset. The ablation studies
are also conducted to validate the effectiveness of each key module.
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