
Spatio-temporal Contrast Network
for Data-efficient Learning of Coronary Artery

Disease in Coronary CT Angiography

Xinghua Ma1, Mingye Zou1, Xinyan Fang1, Yang Liu1, Gongning Luo �1,3,
Wei Wang2, Kuanquan Wang1, Zhaowen Qiu4, Xin Gao3, and Shuo Li5,6

1 the Faculty of Computing, Harbin Institute of Technology, Harbin, China
luogongning@hit.edu.cn

2 the Faculty of Computing, Harbin Institute of Technology, Shenzhen, China
3 the Computational Bioscience Research Center, King Abdullah University of

Science and Technology, Thuwal, Saudi Arabia
4 the Institute of Information and Computer Engineering, Northeast Forestry

University, Harbin, China
5 the Department of Computer and Data Science, Case Western Reserve University,

Cleveland, USA
6 the Department of Biomedical Engineering, Case Western Reserve University,

Cleveland, USA

Abstract. Coronary artery disease (CAD) poses a significant challenge
to cardiovascular patients worldwide, underscoring the crucial role of au-
tomated CAD diagnostic technology in clinical settings. Previous meth-
ods for diagnosing CAD using coronary artery CT angiography (CCTA)
images have certain limitations in widespread replication and clinical ap-
plication due to the high demand for annotated medical imaging data. In
this work, we introduce the Spatio-temporal Contrast Network (SC-Net)
for the first time, designed to tackle the challenges of data-efficient learn-
ing in CAD diagnosis based on CCTA. SC-Net utilizes data augmenta-
tion to facilitate clinical feature learning and leverages spatio-temporal
prediction-contrast based on dual tasks to maximize the effectiveness
of limited data, thus providing clinically reliable predictive results. Ex-
perimental findings from a dataset comprising 218 CCTA images from
diverse patients demonstrate that SC-Net achieves outstanding perfor-
mance in automated CAD diagnosis with a reduced number of training
samples. The introduction of SC-Net presents a practical data-efficient
learning strategy, thereby facilitating the implementation and applica-
tion of automated CAD diagnosis across a broader spectrum of clini-
cal scenarios. The source code is publicly available at the following link
(https://github.com/PerceptionComputingLab/SC-Net).

Keywords: Coronary Artery Disease · Coronary CT Angiography ·
Data-efficient Learning · Spatio-temporal · Computer-aided Diagnosis.
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1 Introduction

Automated diagnosis of coronary artery disease (CAD) using coronary CT an-
giography (CCTA) imaging is crucial in clinical settings for computer-aided di-
agnosis [5,7]. CAD has been widely recognized as one of the most serious medical
conditions, frequently resulting in fatal outcomes such as heart attacks and heart
failure [11]. Through CCTA, a non-invasive imaging technique, physicians can
examine both the anatomical structure and blood flow in the coronary arter-
ies [1]. Automating this diagnostic process offers physicians a quicker and more
effective solution for accurately assessing CAD.

Fig. 1. (a) The scarcity of annotated data worsens the imbalance between healthy and
lesion regions. (b) Spatio-temporal learning, along with dual-task contrast and data
augmentation, maximize the use of limited samples, addressing data scarcity scenarios.

Deep learning-based computer-aided diagnostic technology has achieved clin-
ical accuracy standards, but the high demand for annotated data for effective
training has brought certain limitations to its adoption in clinical environments.
Initially, CAD computer-aided diagnosis relied on semi-automated technolo-
gies [17, 20]. While these methods did not require annotated data for training,
they were limited by the need for manual intervention from healthcare profes-
sionals, hindering their usability. Advancements in deep learning have led to
the rise of automated CAD diagnosis [14], primarily focusing on sampling-point
classification and object detection. Sampling-point classification involves identi-
fying and classifying centerline points of coronary arteries within Curved Planar
Reformation (CPR) volumes. Zreik et al. [19] pioneered the integration of Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
for feature extraction, enabling multi-class classification of stenoses and plaques.
Subsequent researchers [3, 8] have made significant enhancements, especially in
detecting significant stenoses with luminal narrowing ≤ 50%. Object detection,
on the other hand, directly predicts regions of interest (ROIs) indicating lesions
and their corresponding categories within CPR volumes. Zhang et al. [18] ana-
lyzed CPR imaging data and employed Faster R-CNN [4] for object detection
task related to coronary lesions. Although these methods have achieved notable
performance improvements, their replication and application in clinical settings
are still hindered by the high demand for annotated data used for training.
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The scarcity of annotated medical images poses a significant barrier to the
extensive application of the aforementioned methods in clinical settings, while
data-efficient learning also presents numerous challenges in the field of auto-
mated CAD diagnosis, as shown in Fig.1(a). (1) In clinical scenarios, there ex-
ists an imbalance between the proportion of coronary artery lesions and healthy
regions [9]. The significance of lesions in automated diagnosis is further dimin-
ished by the limited volume of data and annotations, complicating the capture
of variable lesions. (2) Insufficient training data significantly undermines the
clinical reliability of previously data-intensive techniques. Within the confines
of limited samples, single-task diagnostic methods encounter challenges in recti-
fying erroneous generalizations, thereby elevating the probability of missed and
misdiagnosis. The challenges faced by data-efficient learning in automated CAD
diagnosis collectively hinder its practical application and development in this
clinical context.

In this work, we introduce the Spatio-temporal Contrast Network (SC-Net)
for data-efficient learning of CAD diagnosis in CCTA. SC-Net aims to provide
clinically reliable lesion assessment guidance despite limited data (Fig.1(b)), sup-
ported by three designs: (1) Clinically-credible data augmentation separates and
recombines lesions within CPR volumes based on clinical guidance, promoting
clinical learning and addressing sample imbalance in data scarcity scenarios.
(2) Spatio-temporal semantic learning captures temporal and spatial relation-
ships within CPR volumes, enabling comprehensive analysis with limited sam-
ples. (3) Dual-task contrastive optimization promotes knowledge sharing and
corrects erroneous generalizations, reducing missed and misdiagnosis in data-
efficient learning. Overall, our main contributions are summarized as follows:
• SC-Net addresses, for the first time, the data-efficient learning challenge in
automated CAD diagnosis, promoting the application of CAD computer-aided
diagnosis in a wider range of clinical scenarios. • Spatio-temporal learning, incor-
porating dual-task contrast and clinically credible data augmentation, extracts
comprehensive lesion-related features from limited data, improving CAD diag-
nosis reliability. • A comprehensive evaluation on a dataset of 218 cases demon-
strates that SC-Net outperforms State-of-the-Art (SOTA) diagnostic methods,
even with smaller training sets.

2 Method

SC-Net effectively utilizes limited data to accomplish data-efficient learning for
automated CAD diagnosis in CCTA, as shown in Fig.2. It consists of three com-
ponents: clinically-credible data augmentation, spatio-temporal semantic learn-
ing, and dual-task contrastive optimization.

2.1 Clinically-credible Data Augmentation

Clinically-credible data augmentation ensures that the training data better re-
flects the diversity and complexity of coronary lesions, thus effectively enabling
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Fig. 2. SC-Net uses data augmentation to enhance the diversity of lesions with limited
data, dual-task learning to extract spatio-temporal features, and prediction contrast
to correct erroneous generalizations.

SC-Net to learn clinically valuable features for CAD diagnosis. According to
guidance from the Society of Cardiovascular Computed Tomography (SCCT) [6],
coronary artery stenosis leading to CAD results from the deposition of various
components that form plaques attached to the blood vessel wall. Therefore,
when using Computer Vision (CV) technology for automated CAD diagnosis,
plaques with contrasting CT values are more distinguishable than subtle changes
in stenosis. Based on these considerations, we augment the relatively limited
dataset while preserving the clinical characteristics of lesions.

Specifically, two sets are created: the coronary background set and the le-
sion foreground set. The coronary background set B comprises all CPR volumes
identified as background elements. The lesion foreground set F comprises all
lesion ROIs in CPR volumes identified as foreground elements. Subsequently,
randomly selected foreground elements from set F are overlaid onto randomly
selected background elements from set B to form samples a, constituting the
augmented set A:

A ={a | a = (b− bI) ∪ fI} s.t. b ∼ B, f ∼ F (1)

where f and b respectively denote foreground elements randomly selected from
set F and background elements randomly selected from set B, and I denotes
the indices of the foreground elements f in the CPR volume. This procedure en-
riches the variety of changing scenarios across different pathological and healthy
segments, thereby providing SC-Net with more CPR volumes capable of learn-
ing clinically relevant features. It is worth noting that, due to variations in the
diameters of different coronary artery segments, the training process based on
augmented data focuses solely on evaluating plaques causing stenosis. For the
overall training of SC-Net, we first pre-train on augmented data A with plaque
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composition, and then fine-tune SC-Net using clinical data B, which includes
both plaque composition and stenosis degree.

2.2 Spatio-temporal Semantic Learning

Spatio-temporal semantic learning synchronously analyzes both the spatial re-
lationships among multiple views of CPR volumes and the temporal correlation
among multiple locations, fully utilizing multifaceted information from limited
data for the high-quality feature extraction. Specifically, the tasks of object de-
tection and sampling-point classification correspond to spatial and temporal se-
mantic learning, respectively.

In spatial semantic learning, a CPR volume xcpr ∈ RD×N1×N1 along with
its four primary 2D-views xivw ∈ RD×N1(i ∈ [0, 3]) (i.e., projections along the
sagittal and coronal axes, as well as two diagonal axes [10]) serve as the input
for object detection. xcpr and xivws are processed by a 3D-CNN and a 2D-CNN
to extract CPR features fcpr and 2D-view features f ivw(i ∈ [0, 3]), respectively.
These features are then jointly fed into Multi-view Spatial Relationship Analysis
to integrate location information among multiple views. During this step, four
3D zero-feature maps f̂ ivw ∈ RD×N1×N1(i ∈ [0, 3]) are generated, with 2D-view
features filling corresponding positions for each f̂ ivw. Weights ws are assigned to
f̂vws and fcpr, and these maps aggregated based on the weights of each view:

fspa = (1− wcpr)
∑3
i=0w

i
vwf̂

i
vw + wcprfcpr ∈ RC×L×H×W (2)

The aggregated feature maps fspa are then transformed into spatial embed-
dings emdspas using a Fully Connected (FC) layer. emdspas are queried using
the Transformer architecture [16] based on randomly initialized Q query embed-
dings embique ∈ R512(i ∈ [0, Q]) [2]. For each embque, two Multi-Layer Percep-
trons (MLPs) with a Sigmoid regression head and a Softmax classification head
respectively are then employed for ROI localization and lesion characterization.

In temporal semantic learning, a series of 3D-cubes xicub ∈ RN2×N2×N2(i ∈
[0, L]) serve as the input for sampling-point classification. Each cube is fed into
a shallow 3D-CNN [8] to extract local features, which are then transformed into
temporal embeddings embitem ∈ R512(i ∈ [0, 31]) through flattening and projec-
tion. The Multi-location Temporal Correlation Analysis step utilizes a Trans-
former encoder to integrate temporal information between different locations.
Finally, each temporal embedding is processed by an MLP with a Softmax clas-
sification head to perform lesion assessment for each sampling point.

2.3 Dual-task Contrastive Optimization

Dual-task Contrastive Optimization jointly optimizes two tasks focusing on dif-
ferent perspectives, enabling mutual supervision and error correction in gen-
eralization during data-efficient learning. SC-Net’s training objective Loverall
includes object detection loss Lod for spatial semantic learning, sampling-point
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classification loss Lsc for temporal semantic learning, and dual-task contrastive
loss Ldc for mutual supervision of multiple perspectives:

Loverall = Lod + Lsc + Ldc (3)

The object detection loss Lod optimizes spatial semantics learning and sub-
task prediction at two stages. At the first phase, the bipartite matching between
the Ground truth set yod and the prediction result set ŷod = {ŷiod}

Q
i=1 is ac-

complished using the Hungarian algorithm [15]. The prediction target of this
sub-task is represented as (ĉi, r̂i), where ci is the category label and r̂i ∈ [0, 1]2

is a vector [êi, ŵi] that defines RoI center coordinate and the weight in the CPR
volume. A permutation of Q elements σ ∈ SQ is searched [2] for with the lowest
cost to solve the bipartite matching:

σ̂ = argmin
σ∈SQ

∑Q
i [−1{ci 6=∅}p̂σ(i)(ci) + 1{ci 6=∅}Lroi(ri, r̂σ(i))] (4)

where p̂σ(i)(ci) is the probability of category ci, ∅ denotes no-object category,
and the RoI loss Lroi(ri, r̂σ(i)) is a linear combination of l1 loss and the Inter-
section over Union (IoU) loss [13], with hyperparameters λiou and λL1 ∈ R (i.e.,
λiouLiou(ri, r̂σ(i)) + λL1‖ri− r̂σ(i)‖1). At the second phase, Lod is formulated as
a linear combination of the negative log-likelihood and the RoI loss, based on
the matched pairs:

Lod(yod, ŷod) =
∑Q
i=1[− log p̂σ̂(i)(ci) + 1{ci 6=∅}Lroi(ri, r̂σ̂(i))] (5)

The sampling-point classification loss Lsc optimizes temporal semantics learning
and sub-task prediction. The cross-entropy evaluation for each sampling-point
between the Ground Truth set ysc = {cisc}Li=1 and the prediction result set
ŷsc = {ŷisc}Li=1 is defined as:

Lsc(ysc, ŷsc) = −L−1
∑L
t=1(

∑
jc
i
sclog(ŷ

i
sc)) (6)

where cisc and ŷisc are the one-hot encoding and the predicted probability for the
j-th class of the i-th sampling-point. The dual-task contrastive loss Ldc facilitates
optimizing two sub-tasks by employing each other’s prediction results as ground
truth, thereby enhancing data utilization efficiency through mutual supervision:

Ldc = Lod(C(ŷsc), ŷod) + Lsc(C−1(ŷod), ŷsc) (7)

where C(·) represents the transformation of sampling-point classification results
into RoIs with their respective categories, and C−1(·) represents the transforma-
tion of object detection results into the categories of sampling-points.

3 Experiment

3.1 Experimental configuration

Dataset. The clinical CCTA scans were obtained from 218 patients (age: 57.4±
6.2 years, 163 males) from 2019 to 2022, annotated by experienced physicians.
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Table 1. Quantitative comparisons (50%/100% data volume) show the superior per-
formance of SC-Net in data-efficient learning for CAD diagnosis. (↑: Stenosis; ↓: Plaque)

Method ACC Prec Recall F1 Spec
Texture CLS. [10] 0.805 / 0.879 0.851 / 0.906 0.847 / 0.909 0.849 / 0.907 0.678 / 0.792
3D-RCNN [19] 0.847 / 0.886 0.875 / 0.911 0.885 / 0.909 0.879 / 0.910 0.748 / 0.811

2D-RCNN+PT. [3] 0.837 / 0.867 0.871 / 0.893 0.876 / 0.898 0.873 / 0.895 0.724 / 0.784
TR-Net [8] 0.812 / 0.893 0.860 / 0.913 0.854 / 0.914 0.856 / 0.914 0.681 / 0.826

Coro. RCNN [18] 0.864 / 0.919 0.892 / 0.936 0.894 / 0.939 0.893 / 0.937 0.773 / 0.872
SC-Net (Ours) 0.914 / 0.928 0.939 / 0.942 0.939 / 0.946 0.938 / 0.944 0.861 / 0.879
3D-RCNN [19] 0.796 / 0.859 0.862 / 0.904 0.862 / 0.906 0.862 / 0.905 0.571 / 0.692

Coro. RCNN [18] 0.844 / 0.887 0.897 / 0.924 0.895 / 0.923 0.896 / 0.923 0.663 / 0.752
SC-Net (Ours) 0.903 / 0.912 0.936 / 0.941 0.934 / 0.939 0.935 / 0.940 0.784 / 0.816

Fig. 3. Qualitative comparisons show the superiority of SC-Net in localizing and char-
acterizing lesions within coronary segments.

A total of 1163 CPR volumes of the main coronary artery branches were recon-
structed with the marching cube algorithm [12]. There were 994 coronary lesions
in these CPR volumes, including 678 non-significant stenoses (208 calcified, 119
non-calcified, and 351 mixed plaques) and 316 significant stenoses (107 calcified,
94 non-calcified, and 115 mixed plaques).

Implementation details. The input shapes of CPR volume and 2D-views
are initialized to 256 × 64 × 64 and 256 × 64, respectively. Each CPR volume
samples 32 3D-cubes uniformly with an interval of 8 voxels, where the shape of
each 3D-cube is initialized as 25× 25× 25. The number of query embeddings Q
is set to 16, assuming the number of lesions in a coronary segment is always less
than or equal to 16. The hyperparameters λiou and λL1 of the IoU loss are set
to 2 and 5 respectively.

Evaluation metrics. For the training process, 70% of CCTA scans are uti-
lized, evenly distributed across lesion categories. The remaining 30% are divided
between validation and test sets. Model weights from the best-performing valida-
tion run after 200 epochs are utilized for performance evaluation on the test set.
Evaluation metrics comprise mean accuracy (ACC), precision (Prec), specificity
(Spec), F1-score (F1), and specificity (Spec) pertaining to stenosis degree and
plaque components at the artery-level.
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Fig. 4. Ablation analysis demonstrates the effectiveness of the SC-Net architecture
for data-efficient learning.

3.2 Experimental results

Comparison with SOTAs. To evaluate the effectiveness of SC-Net in auto-
mated CAD diagnosis, we conducted a comparative experiment against repre-
sentative SOTA methods cited in previous works [3, 8, 10, 18, 19]. Since plaques
are not addressed in [3,8,10], we focused solely on evaluating the stenosis degree
predicted by these methods during the evaluation process. As shown in Tab.1,
the quantitative results demonstrate that SC-Net exhibits superior performance
compared to SOTA methods, even when trained on a reduced dataset. SC-Net
demonstrates significantly better performance compared to SOTAmethods when
using 100% of the training data. Even when the dataset is reduced to 50%, its
performance remains comparable to those SOTA methods trained with 100% of
the data. These findings suggest that our method enables more comprehensive
analysis leveraging limited data resources, thereby enhancing the reliability of
CAD diagnostic guidance in clinical settings. Moreover, qualitative results re-
veals that SC-Net consistently delivers clinically reliable and realistic automated
CAD diagnostic outcomes, as shown in Fig.3. It effectively addresses diverse sce-
narios, including extensive stenosis caused by continuous plaques and various
stenoses induced by multiple small plaques. Notably, there exists a strong cor-
relation between the prediction of stenosis and plaques, leading to a reduction
in the probability of physiologically implausible predictions [19].

Ablation study. To validate the effectiveness of SC-Net’s architectural de-
sign, we conducted ablation analyses on three designs outlined in Sec. 2.1 to
2.3. The absence of Clinically-credible Data Augmentation (CDA) resulted in a
significant decline in SC-Net’s performance as the training set size decreased
(Fig.4(a)), underscoring the augmentation’s role in enhancing data diversity
for learning clinical features. The differences in performance observed between
the removal of spatially-related object detection (SOD) and temporally-related
sampling-point classification (TSC) (Fig.4(b)) suggest that spatio-temporal se-
mantic learning can effectively leverage limited data from various perspectives.
Comparing SC-Net’s performance with or without Ldc of dual-task contrastive
optimization (Fig.4(c)), optimizing through prediction contrast of results from
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the two tasks can better rectify generalization errors from limited samples,
thereby further enhancing clinical reliability.

4 Conclusion

In this work, we proposed a novel data-efficient learning solution (SC-Net),
which addresses the challenge of data scarcity in automated CAD diagnosis
based on CCTA for the first time. Compared to previous technologies focus-
ing on sampling-point classification and object detection, SC-Net leverages dual
tasks to extract spatiotemporal semantics, thereby mutually enhancing predic-
tion through contrast. Our experimental results demonstrated that SC-Net out-
performs SOTA methods in data-efficient learning, achieving superior perfor-
mance with less training data. Through clinically credible data amplification
and multifaceted analysis, SC-Net offers a cost-effective and reliable CAD diag-
nostic solution across a broader range of clinical scenarios.
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